Evaluate
10\sqrt{2}+16-6\sqrt{6}-8\sqrt{3}\approx 1.588790706
Expand
10 \sqrt{2} + 16 - 6 \sqrt{6} - 8 \sqrt{3} = 1.588790706
Quiz
Arithmetic
5 problems similar to:
{ \left( \sqrt{ 6 } - \sqrt{ 2 } + \sqrt{ 3 } -2 \right) }^{ 2 } +1
Share
Copied to clipboard
2\sqrt{3}\sqrt{6}-2\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Square \sqrt{6}-\sqrt{2}+\sqrt{3}-2.
2\sqrt{3}\sqrt{3}\sqrt{2}-2\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
2\times 3\sqrt{2}-2\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Multiply \sqrt{3} and \sqrt{3} to get 3.
6\sqrt{2}-2\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Multiply 2 and 3 to get 6.
6\sqrt{2}-2\sqrt{6}-2\sqrt{2}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
6\sqrt{2}-2\sqrt{6}-2\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
6\sqrt{2}-2\sqrt{6}-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Multiply \sqrt{2} and \sqrt{2} to get 2.
6\sqrt{2}-2\sqrt{6}-4\sqrt{3}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Multiply -2 and 2 to get -4.
6\sqrt{2}-2\sqrt{6}-4\sqrt{3}+2+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
The square of \sqrt{2} is 2.
6\sqrt{2}-2\sqrt{6}-4\sqrt{3}+2+3+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
The square of \sqrt{3} is 3.
6\sqrt{2}-2\sqrt{6}-4\sqrt{3}+5+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Add 2 and 3 to get 5.
6\sqrt{2}-2\sqrt{6}-4\sqrt{3}+5+6-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
The square of \sqrt{6} is 6.
6\sqrt{2}-2\sqrt{6}-4\sqrt{3}+11-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Add 5 and 6 to get 11.
6\sqrt{2}-2\sqrt{6}-8\sqrt{3}+11-4\sqrt{6}+4\sqrt{2}+4+1
Combine -4\sqrt{3} and -4\sqrt{3} to get -8\sqrt{3}.
6\sqrt{2}-6\sqrt{6}-8\sqrt{3}+11+4\sqrt{2}+4+1
Combine -2\sqrt{6} and -4\sqrt{6} to get -6\sqrt{6}.
10\sqrt{2}-6\sqrt{6}-8\sqrt{3}+11+4+1
Combine 6\sqrt{2} and 4\sqrt{2} to get 10\sqrt{2}.
10\sqrt{2}-6\sqrt{6}-8\sqrt{3}+15+1
Add 11 and 4 to get 15.
10\sqrt{2}-6\sqrt{6}-8\sqrt{3}+16
Add 15 and 1 to get 16.
2\sqrt{3}\sqrt{6}-2\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Square \sqrt{6}-\sqrt{2}+\sqrt{3}-2.
2\sqrt{3}\sqrt{3}\sqrt{2}-2\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
2\times 3\sqrt{2}-2\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Multiply \sqrt{3} and \sqrt{3} to get 3.
6\sqrt{2}-2\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Multiply 2 and 3 to get 6.
6\sqrt{2}-2\sqrt{6}-2\sqrt{2}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
6\sqrt{2}-2\sqrt{6}-2\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
6\sqrt{2}-2\sqrt{6}-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Multiply \sqrt{2} and \sqrt{2} to get 2.
6\sqrt{2}-2\sqrt{6}-4\sqrt{3}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Multiply -2 and 2 to get -4.
6\sqrt{2}-2\sqrt{6}-4\sqrt{3}+2+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
The square of \sqrt{2} is 2.
6\sqrt{2}-2\sqrt{6}-4\sqrt{3}+2+3+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
The square of \sqrt{3} is 3.
6\sqrt{2}-2\sqrt{6}-4\sqrt{3}+5+\left(\sqrt{6}\right)^{2}-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Add 2 and 3 to get 5.
6\sqrt{2}-2\sqrt{6}-4\sqrt{3}+5+6-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
The square of \sqrt{6} is 6.
6\sqrt{2}-2\sqrt{6}-4\sqrt{3}+11-4\sqrt{3}-4\sqrt{6}+4\sqrt{2}+4+1
Add 5 and 6 to get 11.
6\sqrt{2}-2\sqrt{6}-8\sqrt{3}+11-4\sqrt{6}+4\sqrt{2}+4+1
Combine -4\sqrt{3} and -4\sqrt{3} to get -8\sqrt{3}.
6\sqrt{2}-6\sqrt{6}-8\sqrt{3}+11+4\sqrt{2}+4+1
Combine -2\sqrt{6} and -4\sqrt{6} to get -6\sqrt{6}.
10\sqrt{2}-6\sqrt{6}-8\sqrt{3}+11+4+1
Combine 6\sqrt{2} and 4\sqrt{2} to get 10\sqrt{2}.
10\sqrt{2}-6\sqrt{6}-8\sqrt{3}+15+1
Add 11 and 4 to get 15.
10\sqrt{2}-6\sqrt{6}-8\sqrt{3}+16
Add 15 and 1 to get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}