Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\frac{9-\sqrt{12}}{\sqrt{3}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-\sqrt{2}\right)^{2}.
6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\frac{9-\sqrt{12}}{\sqrt{3}}
The square of \sqrt{6} is 6.
6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\frac{9-\sqrt{12}}{\sqrt{3}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}+\frac{9-\sqrt{12}}{\sqrt{3}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}+\frac{9-\sqrt{12}}{\sqrt{3}}
Multiply -2 and 2 to get -4.
6-4\sqrt{3}+2+\frac{9-\sqrt{12}}{\sqrt{3}}
The square of \sqrt{2} is 2.
8-4\sqrt{3}+\frac{9-\sqrt{12}}{\sqrt{3}}
Add 6 and 2 to get 8.
8-4\sqrt{3}+\frac{9-2\sqrt{3}}{\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
8-4\sqrt{3}+\frac{\left(9-2\sqrt{3}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{9-2\sqrt{3}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
8-4\sqrt{3}+\frac{\left(9-2\sqrt{3}\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{3\left(8-4\sqrt{3}\right)}{3}+\frac{\left(9-2\sqrt{3}\right)\sqrt{3}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 8-4\sqrt{3} times \frac{3}{3}.
\frac{3\left(8-4\sqrt{3}\right)+\left(9-2\sqrt{3}\right)\sqrt{3}}{3}
Since \frac{3\left(8-4\sqrt{3}\right)}{3} and \frac{\left(9-2\sqrt{3}\right)\sqrt{3}}{3} have the same denominator, add them by adding their numerators.
\frac{24-12\sqrt{3}+9\sqrt{3}-6}{3}
Do the multiplications in 3\left(8-4\sqrt{3}\right)+\left(9-2\sqrt{3}\right)\sqrt{3}.
\frac{18-3\sqrt{3}}{3}
Do the calculations in 24-12\sqrt{3}+9\sqrt{3}-6.
6-\sqrt{3}
Divide each term of 18-3\sqrt{3} by 3 to get 6-\sqrt{3}.