Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{5}\right)^{2}-2\sqrt{5}+1+\frac{20}{5-\sqrt{5}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-1\right)^{2}.
5-2\sqrt{5}+1+\frac{20}{5-\sqrt{5}}
The square of \sqrt{5} is 5.
6-2\sqrt{5}+\frac{20}{5-\sqrt{5}}
Add 5 and 1 to get 6.
6-2\sqrt{5}+\frac{20\left(5+\sqrt{5}\right)}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}
Rationalize the denominator of \frac{20}{5-\sqrt{5}} by multiplying numerator and denominator by 5+\sqrt{5}.
6-2\sqrt{5}+\frac{20\left(5+\sqrt{5}\right)}{5^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6-2\sqrt{5}+\frac{20\left(5+\sqrt{5}\right)}{25-5}
Square 5. Square \sqrt{5}.
6-2\sqrt{5}+\frac{20\left(5+\sqrt{5}\right)}{20}
Subtract 5 from 25 to get 20.
6-2\sqrt{5}+5+\sqrt{5}
Cancel out 20 and 20.
11-2\sqrt{5}+\sqrt{5}
Add 6 and 5 to get 11.
11-\sqrt{5}
Combine -2\sqrt{5} and \sqrt{5} to get -\sqrt{5}.