Evaluate
11-\sqrt{5}\approx 8.763932023
Share
Copied to clipboard
\left(\sqrt{5}\right)^{2}-2\sqrt{5}+1+\frac{20}{5-\sqrt{5}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-1\right)^{2}.
5-2\sqrt{5}+1+\frac{20}{5-\sqrt{5}}
The square of \sqrt{5} is 5.
6-2\sqrt{5}+\frac{20}{5-\sqrt{5}}
Add 5 and 1 to get 6.
6-2\sqrt{5}+\frac{20\left(5+\sqrt{5}\right)}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}
Rationalize the denominator of \frac{20}{5-\sqrt{5}} by multiplying numerator and denominator by 5+\sqrt{5}.
6-2\sqrt{5}+\frac{20\left(5+\sqrt{5}\right)}{5^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6-2\sqrt{5}+\frac{20\left(5+\sqrt{5}\right)}{25-5}
Square 5. Square \sqrt{5}.
6-2\sqrt{5}+\frac{20\left(5+\sqrt{5}\right)}{20}
Subtract 5 from 25 to get 20.
6-2\sqrt{5}+5+\sqrt{5}
Cancel out 20 and 20.
11-2\sqrt{5}+\sqrt{5}
Add 6 and 5 to get 11.
11-\sqrt{5}
Combine -2\sqrt{5} and \sqrt{5} to get -\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}