Evaluate
4\sqrt{15}\approx 15.491933385
Expand
4 \sqrt{15} = 15.491933385
Share
Copied to clipboard
\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}-\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{5}+\sqrt{3}\right)^{2}.
5+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}-\sqrt{3}\right)^{2}
The square of \sqrt{5} is 5.
5+2\sqrt{15}+\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}-\sqrt{3}\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
5+2\sqrt{15}+3-\left(\sqrt{5}-\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
8+2\sqrt{15}-\left(\sqrt{5}-\sqrt{3}\right)^{2}
Add 5 and 3 to get 8.
8+2\sqrt{15}-\left(\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-\sqrt{3}\right)^{2}.
8+2\sqrt{15}-\left(5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
The square of \sqrt{5} is 5.
8+2\sqrt{15}-\left(5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}\right)
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
8+2\sqrt{15}-\left(5-2\sqrt{15}+3\right)
The square of \sqrt{3} is 3.
8+2\sqrt{15}-\left(8-2\sqrt{15}\right)
Add 5 and 3 to get 8.
8+2\sqrt{15}-8+2\sqrt{15}
To find the opposite of 8-2\sqrt{15}, find the opposite of each term.
2\sqrt{15}+2\sqrt{15}
Subtract 8 from 8 to get 0.
4\sqrt{15}
Combine 2\sqrt{15} and 2\sqrt{15} to get 4\sqrt{15}.
\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}-\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{5}+\sqrt{3}\right)^{2}.
5+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}-\sqrt{3}\right)^{2}
The square of \sqrt{5} is 5.
5+2\sqrt{15}+\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}-\sqrt{3}\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
5+2\sqrt{15}+3-\left(\sqrt{5}-\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
8+2\sqrt{15}-\left(\sqrt{5}-\sqrt{3}\right)^{2}
Add 5 and 3 to get 8.
8+2\sqrt{15}-\left(\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-\sqrt{3}\right)^{2}.
8+2\sqrt{15}-\left(5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
The square of \sqrt{5} is 5.
8+2\sqrt{15}-\left(5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}\right)
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
8+2\sqrt{15}-\left(5-2\sqrt{15}+3\right)
The square of \sqrt{3} is 3.
8+2\sqrt{15}-\left(8-2\sqrt{15}\right)
Add 5 and 3 to get 8.
8+2\sqrt{15}-8+2\sqrt{15}
To find the opposite of 8-2\sqrt{15}, find the opposite of each term.
2\sqrt{15}+2\sqrt{15}
Subtract 8 from 8 to get 0.
4\sqrt{15}
Combine 2\sqrt{15} and 2\sqrt{15} to get 4\sqrt{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}