Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1+\left(2\sqrt{3}-1\right)^{2}+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
3-2\sqrt{3}+1+\left(2\sqrt{3}-1\right)^{2}+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
The square of \sqrt{3} is 3.
4-2\sqrt{3}+\left(2\sqrt{3}-1\right)^{2}+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Add 3 and 1 to get 4.
4-2\sqrt{3}+4\left(\sqrt{3}\right)^{2}-4\sqrt{3}+1+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-1\right)^{2}.
4-2\sqrt{3}+4\times 3-4\sqrt{3}+1+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
The square of \sqrt{3} is 3.
4-2\sqrt{3}+12-4\sqrt{3}+1+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Multiply 4 and 3 to get 12.
4-2\sqrt{3}+13-4\sqrt{3}+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Add 12 and 1 to get 13.
17-2\sqrt{3}-4\sqrt{3}+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Add 4 and 13 to get 17.
17-6\sqrt{3}+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Combine -2\sqrt{3} and -4\sqrt{3} to get -6\sqrt{3}.
17-6\sqrt{3}+\left(\sqrt{3}\right)^{2}-4\sqrt{3}+4-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-2\right)^{2}.
17-6\sqrt{3}+3-4\sqrt{3}+4-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
The square of \sqrt{3} is 3.
17-6\sqrt{3}+7-4\sqrt{3}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Add 3 and 4 to get 7.
24-6\sqrt{3}-4\sqrt{3}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Add 17 and 7 to get 24.
24-10\sqrt{3}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Combine -6\sqrt{3} and -4\sqrt{3} to get -10\sqrt{3}.
24-10\sqrt{3}-\left(2\left(\sqrt{3}\right)^{2}-3\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Use the distributive property to multiply \sqrt{3}-1 by 2\sqrt{3}-1 and combine like terms.
24-10\sqrt{3}-\left(2\times 3-3\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
The square of \sqrt{3} is 3.
24-10\sqrt{3}-\left(6-3\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Multiply 2 and 3 to get 6.
24-10\sqrt{3}-\left(7-3\sqrt{3}\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Add 6 and 1 to get 7.
24-10\sqrt{3}-7+3\sqrt{3}-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
To find the opposite of 7-3\sqrt{3}, find the opposite of each term.
17-10\sqrt{3}+3\sqrt{3}-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Subtract 7 from 24 to get 17.
17-7\sqrt{3}-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Combine -10\sqrt{3} and 3\sqrt{3} to get -7\sqrt{3}.
17-7\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}-3\sqrt{3}+2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Use the distributive property to multiply \sqrt{3}-1 by \sqrt{3}-2 and combine like terms.
17-7\sqrt{3}-\left(3-3\sqrt{3}+2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
The square of \sqrt{3} is 3.
17-7\sqrt{3}-\left(5-3\sqrt{3}\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Add 3 and 2 to get 5.
17-7\sqrt{3}-5+3\sqrt{3}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
To find the opposite of 5-3\sqrt{3}, find the opposite of each term.
12-7\sqrt{3}+3\sqrt{3}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Subtract 5 from 17 to get 12.
12-4\sqrt{3}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Combine -7\sqrt{3} and 3\sqrt{3} to get -4\sqrt{3}.
12-4\sqrt{3}-\left(2\left(\sqrt{3}\right)^{2}-4\sqrt{3}+2\right)
Use the distributive property to multiply \sqrt{3}-1 by 2\sqrt{3}-2 and combine like terms.
12-4\sqrt{3}-\left(2\times 3-4\sqrt{3}+2\right)
The square of \sqrt{3} is 3.
12-4\sqrt{3}-\left(6-4\sqrt{3}+2\right)
Multiply 2 and 3 to get 6.
12-4\sqrt{3}-\left(8-4\sqrt{3}\right)
Add 6 and 2 to get 8.
12-4\sqrt{3}-8+4\sqrt{3}
To find the opposite of 8-4\sqrt{3}, find the opposite of each term.
4-4\sqrt{3}+4\sqrt{3}
Subtract 8 from 12 to get 4.
4
Combine -4\sqrt{3} and 4\sqrt{3} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}