Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

2\sqrt{2}\sqrt{6}-2\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
Square \sqrt{2}-\sqrt{3}+\sqrt{6}.
2\sqrt{2}\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2\times 2\sqrt{3}-2\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
4\sqrt{3}-2\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
Multiply 2 and 2 to get 4.
4\sqrt{3}-2\sqrt{6}-2\sqrt{3}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
4\sqrt{3}-2\sqrt{6}-2\sqrt{3}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
4\sqrt{3}-2\sqrt{6}-2\times 3\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
4\sqrt{3}-2\sqrt{6}-6\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
Multiply -2 and 3 to get -6.
4\sqrt{3}-2\sqrt{6}-6\sqrt{2}+2+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
The square of \sqrt{2} is 2.
4\sqrt{3}-2\sqrt{6}-6\sqrt{2}+2+3+\left(\sqrt{6}\right)^{2}
The square of \sqrt{3} is 3.
4\sqrt{3}-2\sqrt{6}-6\sqrt{2}+5+\left(\sqrt{6}\right)^{2}
Add 2 and 3 to get 5.
4\sqrt{3}-2\sqrt{6}-6\sqrt{2}+5+6
The square of \sqrt{6} is 6.
4\sqrt{3}-2\sqrt{6}-6\sqrt{2}+11
Add 5 and 6 to get 11.
2\sqrt{2}\sqrt{6}-2\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
Square \sqrt{2}-\sqrt{3}+\sqrt{6}.
2\sqrt{2}\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2\times 2\sqrt{3}-2\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
4\sqrt{3}-2\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
Multiply 2 and 2 to get 4.
4\sqrt{3}-2\sqrt{6}-2\sqrt{3}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
4\sqrt{3}-2\sqrt{6}-2\sqrt{3}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
4\sqrt{3}-2\sqrt{6}-2\times 3\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
4\sqrt{3}-2\sqrt{6}-6\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
Multiply -2 and 3 to get -6.
4\sqrt{3}-2\sqrt{6}-6\sqrt{2}+2+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}
The square of \sqrt{2} is 2.
4\sqrt{3}-2\sqrt{6}-6\sqrt{2}+2+3+\left(\sqrt{6}\right)^{2}
The square of \sqrt{3} is 3.
4\sqrt{3}-2\sqrt{6}-6\sqrt{2}+5+\left(\sqrt{6}\right)^{2}
Add 2 and 3 to get 5.
4\sqrt{3}-2\sqrt{6}-6\sqrt{2}+5+6
The square of \sqrt{6} is 6.
4\sqrt{3}-2\sqrt{6}-6\sqrt{2}+11
Add 5 and 6 to get 11.