Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{2}\right)^{2}+2\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}-\left(5-3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{2}+\sqrt{6}\right)^{2}.
2+2\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}-\left(5-3\right)
The square of \sqrt{2} is 2.
2+2\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{6}\right)^{2}-\left(5-3\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2+2\times 2\sqrt{3}+\left(\sqrt{6}\right)^{2}-\left(5-3\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
2+4\sqrt{3}+\left(\sqrt{6}\right)^{2}-\left(5-3\right)
Multiply 2 and 2 to get 4.
2+4\sqrt{3}+6-\left(5-3\right)
The square of \sqrt{6} is 6.
8+4\sqrt{3}-\left(5-3\right)
Add 2 and 6 to get 8.
8+4\sqrt{3}-2
Subtract 3 from 5 to get 2.
6+4\sqrt{3}
Subtract 2 from 8 to get 6.
\left(\sqrt{2}\right)^{2}+2\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}-\left(5-3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{2}+\sqrt{6}\right)^{2}.
2+2\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}-\left(5-3\right)
The square of \sqrt{2} is 2.
2+2\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{6}\right)^{2}-\left(5-3\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2+2\times 2\sqrt{3}+\left(\sqrt{6}\right)^{2}-\left(5-3\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
2+4\sqrt{3}+\left(\sqrt{6}\right)^{2}-\left(5-3\right)
Multiply 2 and 2 to get 4.
2+4\sqrt{3}+6-\left(5-3\right)
The square of \sqrt{6} is 6.
8+4\sqrt{3}-\left(5-3\right)
Add 2 and 6 to get 8.
8+4\sqrt{3}-2
Subtract 3 from 5 to get 2.
6+4\sqrt{3}
Subtract 2 from 8 to get 6.