Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2\sqrt{3}+\sqrt{6}+\sqrt{26}\right)^{2}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\sqrt{6}\sqrt{26}+4\sqrt{3}\sqrt{6}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Square 2\sqrt{3}+\sqrt{6}+\sqrt{26}.
2\sqrt{156}+4\sqrt{3}\sqrt{6}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
To multiply \sqrt{6} and \sqrt{26}, multiply the numbers under the square root.
2\sqrt{156}+4\sqrt{3}\sqrt{3}\sqrt{2}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
2\sqrt{156}+4\times 3\sqrt{2}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
2\sqrt{156}+12\sqrt{2}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Multiply 4 and 3 to get 12.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
To multiply \sqrt{3} and \sqrt{26}, multiply the numbers under the square root.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+4\times 3+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
The square of \sqrt{3} is 3.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+12+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Multiply 4 and 3 to get 12.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+12+6+\left(\sqrt{26}\right)^{2}
The square of \sqrt{6} is 6.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+18+\left(\sqrt{26}\right)^{2}
Add 12 and 6 to get 18.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+18+26
The square of \sqrt{26} is 26.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+44
Add 18 and 26 to get 44.
2\times 2\sqrt{39}+12\sqrt{2}+4\sqrt{78}+44
Factor 156=2^{2}\times 39. Rewrite the square root of the product \sqrt{2^{2}\times 39} as the product of square roots \sqrt{2^{2}}\sqrt{39}. Take the square root of 2^{2}.
4\sqrt{39}+12\sqrt{2}+4\sqrt{78}+44
Multiply 2 and 2 to get 4.
\left(2\sqrt{3}+\sqrt{6}+\sqrt{26}\right)^{2}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\sqrt{6}\sqrt{26}+4\sqrt{3}\sqrt{6}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Square 2\sqrt{3}+\sqrt{6}+\sqrt{26}.
2\sqrt{156}+4\sqrt{3}\sqrt{6}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
To multiply \sqrt{6} and \sqrt{26}, multiply the numbers under the square root.
2\sqrt{156}+4\sqrt{3}\sqrt{3}\sqrt{2}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
2\sqrt{156}+4\times 3\sqrt{2}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
2\sqrt{156}+12\sqrt{2}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Multiply 4 and 3 to get 12.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
To multiply \sqrt{3} and \sqrt{26}, multiply the numbers under the square root.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+4\times 3+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
The square of \sqrt{3} is 3.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+12+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Multiply 4 and 3 to get 12.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+12+6+\left(\sqrt{26}\right)^{2}
The square of \sqrt{6} is 6.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+18+\left(\sqrt{26}\right)^{2}
Add 12 and 6 to get 18.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+18+26
The square of \sqrt{26} is 26.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+44
Add 18 and 26 to get 44.
2\times 2\sqrt{39}+12\sqrt{2}+4\sqrt{78}+44
Factor 156=2^{2}\times 39. Rewrite the square root of the product \sqrt{2^{2}\times 39} as the product of square roots \sqrt{2^{2}}\sqrt{39}. Take the square root of 2^{2}.
4\sqrt{39}+12\sqrt{2}+4\sqrt{78}+44
Multiply 2 and 2 to get 4.