Evaluate
4\left(\sqrt{39}+\sqrt{78}+3\sqrt{2}+11\right)\approx 121.277598207
Expand
4 \sqrt{39} + 4 \sqrt{78} + 12 \sqrt{2} + 44 = 121.277598207
Quiz
Arithmetic
5 problems similar to:
{ \left( \sqrt{ 12 } + \sqrt{ 6 } + \sqrt{ 26 } \right) }^{ 2 }
Share
Copied to clipboard
\left(2\sqrt{3}+\sqrt{6}+\sqrt{26}\right)^{2}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\sqrt{6}\sqrt{26}+4\sqrt{3}\sqrt{6}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Square 2\sqrt{3}+\sqrt{6}+\sqrt{26}.
2\sqrt{156}+4\sqrt{3}\sqrt{6}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
To multiply \sqrt{6} and \sqrt{26}, multiply the numbers under the square root.
2\sqrt{156}+4\sqrt{3}\sqrt{3}\sqrt{2}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
2\sqrt{156}+4\times 3\sqrt{2}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
2\sqrt{156}+12\sqrt{2}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Multiply 4 and 3 to get 12.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
To multiply \sqrt{3} and \sqrt{26}, multiply the numbers under the square root.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+4\times 3+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
The square of \sqrt{3} is 3.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+12+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Multiply 4 and 3 to get 12.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+12+6+\left(\sqrt{26}\right)^{2}
The square of \sqrt{6} is 6.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+18+\left(\sqrt{26}\right)^{2}
Add 12 and 6 to get 18.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+18+26
The square of \sqrt{26} is 26.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+44
Add 18 and 26 to get 44.
2\times 2\sqrt{39}+12\sqrt{2}+4\sqrt{78}+44
Factor 156=2^{2}\times 39. Rewrite the square root of the product \sqrt{2^{2}\times 39} as the product of square roots \sqrt{2^{2}}\sqrt{39}. Take the square root of 2^{2}.
4\sqrt{39}+12\sqrt{2}+4\sqrt{78}+44
Multiply 2 and 2 to get 4.
\left(2\sqrt{3}+\sqrt{6}+\sqrt{26}\right)^{2}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\sqrt{6}\sqrt{26}+4\sqrt{3}\sqrt{6}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Square 2\sqrt{3}+\sqrt{6}+\sqrt{26}.
2\sqrt{156}+4\sqrt{3}\sqrt{6}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
To multiply \sqrt{6} and \sqrt{26}, multiply the numbers under the square root.
2\sqrt{156}+4\sqrt{3}\sqrt{3}\sqrt{2}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
2\sqrt{156}+4\times 3\sqrt{2}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
2\sqrt{156}+12\sqrt{2}+4\sqrt{3}\sqrt{26}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Multiply 4 and 3 to get 12.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+4\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
To multiply \sqrt{3} and \sqrt{26}, multiply the numbers under the square root.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+4\times 3+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
The square of \sqrt{3} is 3.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+12+\left(\sqrt{6}\right)^{2}+\left(\sqrt{26}\right)^{2}
Multiply 4 and 3 to get 12.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+12+6+\left(\sqrt{26}\right)^{2}
The square of \sqrt{6} is 6.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+18+\left(\sqrt{26}\right)^{2}
Add 12 and 6 to get 18.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+18+26
The square of \sqrt{26} is 26.
2\sqrt{156}+12\sqrt{2}+4\sqrt{78}+44
Add 18 and 26 to get 44.
2\times 2\sqrt{39}+12\sqrt{2}+4\sqrt{78}+44
Factor 156=2^{2}\times 39. Rewrite the square root of the product \sqrt{2^{2}\times 39} as the product of square roots \sqrt{2^{2}}\sqrt{39}. Take the square root of 2^{2}.
4\sqrt{39}+12\sqrt{2}+4\sqrt{78}+44
Multiply 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}