Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(1.3-0.6\times \frac{\sqrt{19.6}}{2}x\right)^{2}
Calculate the square root of 1.69 and get 1.3.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \left(\frac{\sqrt{19.6}}{2}\right)^{2}x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1.3-0.6\times \frac{\sqrt{19.6}}{2}x\right)^{2}.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{\left(\sqrt{19.6}\right)^{2}}{2^{2}}x^{2}
To raise \frac{\sqrt{19.6}}{2} to a power, raise both numerator and denominator to the power and then divide.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{19.6}{2^{2}}x^{2}
The square of \sqrt{19.6} is 19.6.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{19.6}{4}x^{2}
Calculate 2 to the power of 2 and get 4.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{196}{40}x^{2}
Expand \frac{19.6}{4} by multiplying both numerator and the denominator by 10.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{49}{10}x^{2}
Reduce the fraction \frac{196}{40} to lowest terms by extracting and canceling out 4.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+\frac{441}{250}x^{2}
Multiply 0.36 and \frac{49}{10} to get \frac{441}{250}.
\left(1.3-0.6\times \frac{\sqrt{19.6}}{2}x\right)^{2}
Calculate the square root of 1.69 and get 1.3.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \left(\frac{\sqrt{19.6}}{2}\right)^{2}x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1.3-0.6\times \frac{\sqrt{19.6}}{2}x\right)^{2}.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{\left(\sqrt{19.6}\right)^{2}}{2^{2}}x^{2}
To raise \frac{\sqrt{19.6}}{2} to a power, raise both numerator and denominator to the power and then divide.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{19.6}{2^{2}}x^{2}
The square of \sqrt{19.6} is 19.6.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{19.6}{4}x^{2}
Calculate 2 to the power of 2 and get 4.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{196}{40}x^{2}
Expand \frac{19.6}{4} by multiplying both numerator and the denominator by 10.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{49}{10}x^{2}
Reduce the fraction \frac{196}{40} to lowest terms by extracting and canceling out 4.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+\frac{441}{250}x^{2}
Multiply 0.36 and \frac{49}{10} to get \frac{441}{250}.