Evaluate
\frac{\left(-21\sqrt{10}x+65\right)^{2}}{2500}
Expand
\frac{441x^{2}}{250}-\frac{273\sqrt{10}x}{250}+1.69
Graph
Share
Copied to clipboard
\left(1.3-0.6\times \frac{\sqrt{19.6}}{2}x\right)^{2}
Calculate the square root of 1.69 and get 1.3.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \left(\frac{\sqrt{19.6}}{2}\right)^{2}x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1.3-0.6\times \frac{\sqrt{19.6}}{2}x\right)^{2}.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{\left(\sqrt{19.6}\right)^{2}}{2^{2}}x^{2}
To raise \frac{\sqrt{19.6}}{2} to a power, raise both numerator and denominator to the power and then divide.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{19.6}{2^{2}}x^{2}
The square of \sqrt{19.6} is 19.6.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{19.6}{4}x^{2}
Calculate 2 to the power of 2 and get 4.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{196}{40}x^{2}
Expand \frac{19.6}{4} by multiplying both numerator and the denominator by 10.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{49}{10}x^{2}
Reduce the fraction \frac{196}{40} to lowest terms by extracting and canceling out 4.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+\frac{441}{250}x^{2}
Multiply 0.36 and \frac{49}{10} to get \frac{441}{250}.
\left(1.3-0.6\times \frac{\sqrt{19.6}}{2}x\right)^{2}
Calculate the square root of 1.69 and get 1.3.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \left(\frac{\sqrt{19.6}}{2}\right)^{2}x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1.3-0.6\times \frac{\sqrt{19.6}}{2}x\right)^{2}.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{\left(\sqrt{19.6}\right)^{2}}{2^{2}}x^{2}
To raise \frac{\sqrt{19.6}}{2} to a power, raise both numerator and denominator to the power and then divide.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{19.6}{2^{2}}x^{2}
The square of \sqrt{19.6} is 19.6.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{19.6}{4}x^{2}
Calculate 2 to the power of 2 and get 4.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{196}{40}x^{2}
Expand \frac{19.6}{4} by multiplying both numerator and the denominator by 10.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+0.36\times \frac{49}{10}x^{2}
Reduce the fraction \frac{196}{40} to lowest terms by extracting and canceling out 4.
1.69-1.56\times \frac{\sqrt{19.6}}{2}x+\frac{441}{250}x^{2}
Multiply 0.36 and \frac{49}{10} to get \frac{441}{250}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}