Solve for x
x\in (-\infty,-17]\cup [-1,-\frac{1}{3})
Graph
Share
Copied to clipboard
x^{2}+18x+17<\left(-x+3\right)^{2}
Calculate \sqrt{x^{2}+18x+17} to the power of 2 and get x^{2}+18x+17.
x^{2}+18x+17<\left(-x\right)^{2}+6\left(-x\right)+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+3\right)^{2}.
x^{2}+18x+17<x^{2}+6\left(-x\right)+9
Calculate -x to the power of 2 and get x^{2}.
x^{2}+18x+17-x^{2}<6\left(-x\right)+9
Subtract x^{2} from both sides.
18x+17<6\left(-x\right)+9
Combine x^{2} and -x^{2} to get 0.
18x+17-6\left(-x\right)<9
Subtract 6\left(-x\right) from both sides.
18x+17-6\left(-1\right)x<9
Multiply -1 and 6 to get -6.
18x+17+6x<9
Multiply -6 and -1 to get 6.
24x+17<9
Combine 18x and 6x to get 24x.
24x<9-17
Subtract 17 from both sides.
24x<-8
Subtract 17 from 9 to get -8.
x<\frac{-8}{24}
Divide both sides by 24. Since 24 is positive, the inequality direction remains the same.
x<-\frac{1}{3}
Reduce the fraction \frac{-8}{24} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}