Evaluate
-\frac{\sqrt{2}}{2}+\frac{3}{4}\approx 0.042893219
Expand
-\frac{\sqrt{2}}{2} + \frac{3}{4} = 0.042893219
Quiz
Arithmetic
5 problems similar to:
{ \left( \sqrt{ \frac{ 1 }{ 2 } } - \frac{ 1 }{ 2 } \right) }^{ 2 }
Share
Copied to clipboard
\left(\frac{\sqrt{1}}{\sqrt{2}}-\frac{1}{2}\right)^{2}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
\left(\frac{1}{\sqrt{2}}-\frac{1}{2}\right)^{2}
Calculate the square root of 1 and get 1.
\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{2}\right)^{2}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{\sqrt{2}}{2}-\frac{1}{2}\right)^{2}
The square of \sqrt{2} is 2.
\left(\frac{\sqrt{2}-1}{2}\right)^{2}
Since \frac{\sqrt{2}}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{2}-1\right)^{2}}{2^{2}}
To raise \frac{\sqrt{2}-1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-1\right)^{2}.
\frac{2-2\sqrt{2}+1}{2^{2}}
The square of \sqrt{2} is 2.
\frac{3-2\sqrt{2}}{2^{2}}
Add 2 and 1 to get 3.
\frac{3-2\sqrt{2}}{4}
Calculate 2 to the power of 2 and get 4.
\left(\frac{\sqrt{1}}{\sqrt{2}}-\frac{1}{2}\right)^{2}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
\left(\frac{1}{\sqrt{2}}-\frac{1}{2}\right)^{2}
Calculate the square root of 1 and get 1.
\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{2}\right)^{2}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{\sqrt{2}}{2}-\frac{1}{2}\right)^{2}
The square of \sqrt{2} is 2.
\left(\frac{\sqrt{2}-1}{2}\right)^{2}
Since \frac{\sqrt{2}}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{2}-1\right)^{2}}{2^{2}}
To raise \frac{\sqrt{2}-1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-1\right)^{2}.
\frac{2-2\sqrt{2}+1}{2^{2}}
The square of \sqrt{2} is 2.
\frac{3-2\sqrt{2}}{2^{2}}
Add 2 and 1 to get 3.
\frac{3-2\sqrt{2}}{4}
Calculate 2 to the power of 2 and get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}