Solve for x
x=\sqrt{2}\approx 1.414213562
x=-\sqrt{2}\approx -1.414213562
Graph
Share
Copied to clipboard
\frac{\left(x+2\right)^{2}}{\left(-\sqrt{2}\right)^{2}}=2x+3
To raise \frac{x+2}{-\sqrt{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}+4x+4}{\left(-\sqrt{2}\right)^{2}}=2x+3
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
\frac{x^{2}+4x+4}{\left(\sqrt{2}\right)^{2}}=2x+3
Calculate -\sqrt{2} to the power of 2 and get \left(\sqrt{2}\right)^{2}.
\frac{x^{2}+4x+4}{2}=2x+3
The square of \sqrt{2} is 2.
\frac{1}{2}x^{2}+2x+2=2x+3
Divide each term of x^{2}+4x+4 by 2 to get \frac{1}{2}x^{2}+2x+2.
\frac{1}{2}x^{2}+2x+2-2x=3
Subtract 2x from both sides.
\frac{1}{2}x^{2}+2=3
Combine 2x and -2x to get 0.
\frac{1}{2}x^{2}=3-2
Subtract 2 from both sides.
\frac{1}{2}x^{2}=1
Subtract 2 from 3 to get 1.
x^{2}=1\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x^{2}=2
Multiply 1 and 2 to get 2.
x=\sqrt{2} x=-\sqrt{2}
Take the square root of both sides of the equation.
\frac{\left(x+2\right)^{2}}{\left(-\sqrt{2}\right)^{2}}=2x+3
To raise \frac{x+2}{-\sqrt{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}+4x+4}{\left(-\sqrt{2}\right)^{2}}=2x+3
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
\frac{x^{2}+4x+4}{\left(\sqrt{2}\right)^{2}}=2x+3
Calculate -\sqrt{2} to the power of 2 and get \left(\sqrt{2}\right)^{2}.
\frac{x^{2}+4x+4}{2}=2x+3
The square of \sqrt{2} is 2.
\frac{1}{2}x^{2}+2x+2=2x+3
Divide each term of x^{2}+4x+4 by 2 to get \frac{1}{2}x^{2}+2x+2.
\frac{1}{2}x^{2}+2x+2-2x=3
Subtract 2x from both sides.
\frac{1}{2}x^{2}+2=3
Combine 2x and -2x to get 0.
\frac{1}{2}x^{2}+2-3=0
Subtract 3 from both sides.
\frac{1}{2}x^{2}-1=0
Subtract 3 from 2 to get -1.
x=\frac{0±\sqrt{0^{2}-4\times \frac{1}{2}\left(-1\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 0 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{1}{2}\left(-1\right)}}{2\times \frac{1}{2}}
Square 0.
x=\frac{0±\sqrt{-2\left(-1\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{0±\sqrt{2}}{2\times \frac{1}{2}}
Multiply -2 times -1.
x=\frac{0±\sqrt{2}}{1}
Multiply 2 times \frac{1}{2}.
x=\sqrt{2}
Now solve the equation x=\frac{0±\sqrt{2}}{1} when ± is plus.
x=-\sqrt{2}
Now solve the equation x=\frac{0±\sqrt{2}}{1} when ± is minus.
x=\sqrt{2} x=-\sqrt{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}