Solve for x
x = \frac{2 \sqrt{15}}{5} \approx 1.549193338
x = -\frac{2 \sqrt{15}}{5} \approx -1.549193338
Graph
Share
Copied to clipboard
\frac{x^{2}}{2^{2}}+3^{2}=\left(2x\right)^{2}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{2^{2}}+9=\left(2x\right)^{2}
Calculate 3 to the power of 2 and get 9.
\frac{x^{2}}{2^{2}}+\frac{9\times 2^{2}}{2^{2}}=\left(2x\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{2^{2}}{2^{2}}.
\frac{x^{2}+9\times 2^{2}}{2^{2}}=\left(2x\right)^{2}
Since \frac{x^{2}}{2^{2}} and \frac{9\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+36}{2^{2}}=\left(2x\right)^{2}
Do the multiplications in x^{2}+9\times 2^{2}.
\frac{x^{2}+36}{2^{2}}=2^{2}x^{2}
Expand \left(2x\right)^{2}.
\frac{x^{2}+36}{2^{2}}=4x^{2}
Calculate 2 to the power of 2 and get 4.
\frac{x^{2}+36}{4}=4x^{2}
Calculate 2 to the power of 2 and get 4.
\frac{1}{4}x^{2}+9=4x^{2}
Divide each term of x^{2}+36 by 4 to get \frac{1}{4}x^{2}+9.
\frac{1}{4}x^{2}+9-4x^{2}=0
Subtract 4x^{2} from both sides.
-\frac{15}{4}x^{2}+9=0
Combine \frac{1}{4}x^{2} and -4x^{2} to get -\frac{15}{4}x^{2}.
-\frac{15}{4}x^{2}=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-9\left(-\frac{4}{15}\right)
Multiply both sides by -\frac{4}{15}, the reciprocal of -\frac{15}{4}.
x^{2}=\frac{12}{5}
Multiply -9 and -\frac{4}{15} to get \frac{12}{5}.
x=\frac{2\sqrt{15}}{5} x=-\frac{2\sqrt{15}}{5}
Take the square root of both sides of the equation.
\frac{x^{2}}{2^{2}}+3^{2}=\left(2x\right)^{2}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{2^{2}}+9=\left(2x\right)^{2}
Calculate 3 to the power of 2 and get 9.
\frac{x^{2}}{2^{2}}+\frac{9\times 2^{2}}{2^{2}}=\left(2x\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{2^{2}}{2^{2}}.
\frac{x^{2}+9\times 2^{2}}{2^{2}}=\left(2x\right)^{2}
Since \frac{x^{2}}{2^{2}} and \frac{9\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+36}{2^{2}}=\left(2x\right)^{2}
Do the multiplications in x^{2}+9\times 2^{2}.
\frac{x^{2}+36}{2^{2}}=2^{2}x^{2}
Expand \left(2x\right)^{2}.
\frac{x^{2}+36}{2^{2}}=4x^{2}
Calculate 2 to the power of 2 and get 4.
\frac{x^{2}+36}{4}=4x^{2}
Calculate 2 to the power of 2 and get 4.
\frac{1}{4}x^{2}+9=4x^{2}
Divide each term of x^{2}+36 by 4 to get \frac{1}{4}x^{2}+9.
\frac{1}{4}x^{2}+9-4x^{2}=0
Subtract 4x^{2} from both sides.
-\frac{15}{4}x^{2}+9=0
Combine \frac{1}{4}x^{2} and -4x^{2} to get -\frac{15}{4}x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{15}{4}\right)\times 9}}{2\left(-\frac{15}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{15}{4} for a, 0 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{15}{4}\right)\times 9}}{2\left(-\frac{15}{4}\right)}
Square 0.
x=\frac{0±\sqrt{15\times 9}}{2\left(-\frac{15}{4}\right)}
Multiply -4 times -\frac{15}{4}.
x=\frac{0±\sqrt{135}}{2\left(-\frac{15}{4}\right)}
Multiply 15 times 9.
x=\frac{0±3\sqrt{15}}{2\left(-\frac{15}{4}\right)}
Take the square root of 135.
x=\frac{0±3\sqrt{15}}{-\frac{15}{2}}
Multiply 2 times -\frac{15}{4}.
x=-\frac{2\sqrt{15}}{5}
Now solve the equation x=\frac{0±3\sqrt{15}}{-\frac{15}{2}} when ± is plus.
x=\frac{2\sqrt{15}}{5}
Now solve the equation x=\frac{0±3\sqrt{15}}{-\frac{15}{2}} when ± is minus.
x=-\frac{2\sqrt{15}}{5} x=\frac{2\sqrt{15}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}