Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}}{2^{2}}+3^{2}=\left(2x\right)^{2}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{2^{2}}+9=\left(2x\right)^{2}
Calculate 3 to the power of 2 and get 9.
\frac{x^{2}}{2^{2}}+\frac{9\times 2^{2}}{2^{2}}=\left(2x\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{2^{2}}{2^{2}}.
\frac{x^{2}+9\times 2^{2}}{2^{2}}=\left(2x\right)^{2}
Since \frac{x^{2}}{2^{2}} and \frac{9\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+36}{2^{2}}=\left(2x\right)^{2}
Do the multiplications in x^{2}+9\times 2^{2}.
\frac{x^{2}+36}{2^{2}}=2^{2}x^{2}
Expand \left(2x\right)^{2}.
\frac{x^{2}+36}{2^{2}}=4x^{2}
Calculate 2 to the power of 2 and get 4.
\frac{x^{2}+36}{4}=4x^{2}
Calculate 2 to the power of 2 and get 4.
\frac{1}{4}x^{2}+9=4x^{2}
Divide each term of x^{2}+36 by 4 to get \frac{1}{4}x^{2}+9.
\frac{1}{4}x^{2}+9-4x^{2}=0
Subtract 4x^{2} from both sides.
-\frac{15}{4}x^{2}+9=0
Combine \frac{1}{4}x^{2} and -4x^{2} to get -\frac{15}{4}x^{2}.
-\frac{15}{4}x^{2}=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-9\left(-\frac{4}{15}\right)
Multiply both sides by -\frac{4}{15}, the reciprocal of -\frac{15}{4}.
x^{2}=\frac{12}{5}
Multiply -9 and -\frac{4}{15} to get \frac{12}{5}.
x=\frac{2\sqrt{15}}{5} x=-\frac{2\sqrt{15}}{5}
Take the square root of both sides of the equation.
\frac{x^{2}}{2^{2}}+3^{2}=\left(2x\right)^{2}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{2^{2}}+9=\left(2x\right)^{2}
Calculate 3 to the power of 2 and get 9.
\frac{x^{2}}{2^{2}}+\frac{9\times 2^{2}}{2^{2}}=\left(2x\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{2^{2}}{2^{2}}.
\frac{x^{2}+9\times 2^{2}}{2^{2}}=\left(2x\right)^{2}
Since \frac{x^{2}}{2^{2}} and \frac{9\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+36}{2^{2}}=\left(2x\right)^{2}
Do the multiplications in x^{2}+9\times 2^{2}.
\frac{x^{2}+36}{2^{2}}=2^{2}x^{2}
Expand \left(2x\right)^{2}.
\frac{x^{2}+36}{2^{2}}=4x^{2}
Calculate 2 to the power of 2 and get 4.
\frac{x^{2}+36}{4}=4x^{2}
Calculate 2 to the power of 2 and get 4.
\frac{1}{4}x^{2}+9=4x^{2}
Divide each term of x^{2}+36 by 4 to get \frac{1}{4}x^{2}+9.
\frac{1}{4}x^{2}+9-4x^{2}=0
Subtract 4x^{2} from both sides.
-\frac{15}{4}x^{2}+9=0
Combine \frac{1}{4}x^{2} and -4x^{2} to get -\frac{15}{4}x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{15}{4}\right)\times 9}}{2\left(-\frac{15}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{15}{4} for a, 0 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{15}{4}\right)\times 9}}{2\left(-\frac{15}{4}\right)}
Square 0.
x=\frac{0±\sqrt{15\times 9}}{2\left(-\frac{15}{4}\right)}
Multiply -4 times -\frac{15}{4}.
x=\frac{0±\sqrt{135}}{2\left(-\frac{15}{4}\right)}
Multiply 15 times 9.
x=\frac{0±3\sqrt{15}}{2\left(-\frac{15}{4}\right)}
Take the square root of 135.
x=\frac{0±3\sqrt{15}}{-\frac{15}{2}}
Multiply 2 times -\frac{15}{4}.
x=-\frac{2\sqrt{15}}{5}
Now solve the equation x=\frac{0±3\sqrt{15}}{-\frac{15}{2}} when ± is plus.
x=\frac{2\sqrt{15}}{5}
Now solve the equation x=\frac{0±3\sqrt{15}}{-\frac{15}{2}} when ± is minus.
x=-\frac{2\sqrt{15}}{5} x=\frac{2\sqrt{15}}{5}
The equation is now solved.