Solve for x
x = -\frac{8}{5} = -1\frac{3}{5} = -1.6
x=0
Graph
Share
Copied to clipboard
\frac{x^{2}}{2^{2}}+\left(x+1\right)^{2}=1
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{2^{2}}+x^{2}+2x+1=1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\frac{x^{2}}{2^{2}}+\frac{\left(x^{2}+2x+1\right)\times 2^{2}}{2^{2}}=1
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}+2x+1 times \frac{2^{2}}{2^{2}}.
\frac{x^{2}+\left(x^{2}+2x+1\right)\times 2^{2}}{2^{2}}=1
Since \frac{x^{2}}{2^{2}} and \frac{\left(x^{2}+2x+1\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+4x^{2}+8x+4}{2^{2}}=1
Do the multiplications in x^{2}+\left(x^{2}+2x+1\right)\times 2^{2}.
\frac{5x^{2}+8x+4}{2^{2}}=1
Combine like terms in x^{2}+4x^{2}+8x+4.
\frac{5x^{2}+8x+4}{4}=1
Calculate 2 to the power of 2 and get 4.
\frac{5}{4}x^{2}+2x+1=1
Divide each term of 5x^{2}+8x+4 by 4 to get \frac{5}{4}x^{2}+2x+1.
\frac{5}{4}x^{2}+2x+1-1=0
Subtract 1 from both sides.
\frac{5}{4}x^{2}+2x=0
Subtract 1 from 1 to get 0.
x\left(\frac{5}{4}x+2\right)=0
Factor out x.
x=0 x=-\frac{8}{5}
To find equation solutions, solve x=0 and \frac{5x}{4}+2=0.
\frac{x^{2}}{2^{2}}+\left(x+1\right)^{2}=1
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{2^{2}}+x^{2}+2x+1=1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\frac{x^{2}}{2^{2}}+\frac{\left(x^{2}+2x+1\right)\times 2^{2}}{2^{2}}=1
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}+2x+1 times \frac{2^{2}}{2^{2}}.
\frac{x^{2}+\left(x^{2}+2x+1\right)\times 2^{2}}{2^{2}}=1
Since \frac{x^{2}}{2^{2}} and \frac{\left(x^{2}+2x+1\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+4x^{2}+8x+4}{2^{2}}=1
Do the multiplications in x^{2}+\left(x^{2}+2x+1\right)\times 2^{2}.
\frac{5x^{2}+8x+4}{2^{2}}=1
Combine like terms in x^{2}+4x^{2}+8x+4.
\frac{5x^{2}+8x+4}{4}=1
Calculate 2 to the power of 2 and get 4.
\frac{5}{4}x^{2}+2x+1=1
Divide each term of 5x^{2}+8x+4 by 4 to get \frac{5}{4}x^{2}+2x+1.
\frac{5}{4}x^{2}+2x+1-1=0
Subtract 1 from both sides.
\frac{5}{4}x^{2}+2x=0
Subtract 1 from 1 to get 0.
x=\frac{-2±\sqrt{2^{2}}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{4} for a, 2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±2}{2\times \frac{5}{4}}
Take the square root of 2^{2}.
x=\frac{-2±2}{\frac{5}{2}}
Multiply 2 times \frac{5}{4}.
x=\frac{0}{\frac{5}{2}}
Now solve the equation x=\frac{-2±2}{\frac{5}{2}} when ± is plus. Add -2 to 2.
x=0
Divide 0 by \frac{5}{2} by multiplying 0 by the reciprocal of \frac{5}{2}.
x=-\frac{4}{\frac{5}{2}}
Now solve the equation x=\frac{-2±2}{\frac{5}{2}} when ± is minus. Subtract 2 from -2.
x=-\frac{8}{5}
Divide -4 by \frac{5}{2} by multiplying -4 by the reciprocal of \frac{5}{2}.
x=0 x=-\frac{8}{5}
The equation is now solved.
\frac{x^{2}}{2^{2}}+\left(x+1\right)^{2}=1
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{x^{2}}{2^{2}}+x^{2}+2x+1=1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
\frac{x^{2}}{2^{2}}+\frac{\left(x^{2}+2x+1\right)\times 2^{2}}{2^{2}}=1
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}+2x+1 times \frac{2^{2}}{2^{2}}.
\frac{x^{2}+\left(x^{2}+2x+1\right)\times 2^{2}}{2^{2}}=1
Since \frac{x^{2}}{2^{2}} and \frac{\left(x^{2}+2x+1\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+4x^{2}+8x+4}{2^{2}}=1
Do the multiplications in x^{2}+\left(x^{2}+2x+1\right)\times 2^{2}.
\frac{5x^{2}+8x+4}{2^{2}}=1
Combine like terms in x^{2}+4x^{2}+8x+4.
\frac{5x^{2}+8x+4}{4}=1
Calculate 2 to the power of 2 and get 4.
\frac{5}{4}x^{2}+2x+1=1
Divide each term of 5x^{2}+8x+4 by 4 to get \frac{5}{4}x^{2}+2x+1.
\frac{5}{4}x^{2}+2x=1-1
Subtract 1 from both sides.
\frac{5}{4}x^{2}+2x=0
Subtract 1 from 1 to get 0.
\frac{\frac{5}{4}x^{2}+2x}{\frac{5}{4}}=\frac{0}{\frac{5}{4}}
Divide both sides of the equation by \frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{2}{\frac{5}{4}}x=\frac{0}{\frac{5}{4}}
Dividing by \frac{5}{4} undoes the multiplication by \frac{5}{4}.
x^{2}+\frac{8}{5}x=\frac{0}{\frac{5}{4}}
Divide 2 by \frac{5}{4} by multiplying 2 by the reciprocal of \frac{5}{4}.
x^{2}+\frac{8}{5}x=0
Divide 0 by \frac{5}{4} by multiplying 0 by the reciprocal of \frac{5}{4}.
x^{2}+\frac{8}{5}x+\left(\frac{4}{5}\right)^{2}=\left(\frac{4}{5}\right)^{2}
Divide \frac{8}{5}, the coefficient of the x term, by 2 to get \frac{4}{5}. Then add the square of \frac{4}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{5}x+\frac{16}{25}=\frac{16}{25}
Square \frac{4}{5} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{4}{5}\right)^{2}=\frac{16}{25}
Factor x^{2}+\frac{8}{5}x+\frac{16}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{5}\right)^{2}}=\sqrt{\frac{16}{25}}
Take the square root of both sides of the equation.
x+\frac{4}{5}=\frac{4}{5} x+\frac{4}{5}=-\frac{4}{5}
Simplify.
x=0 x=-\frac{8}{5}
Subtract \frac{4}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}