Evaluate
\frac{841}{576}\approx 1.460069444
Factor
\frac{29 ^ {2}}{2 ^ {6} \cdot 3 ^ {2}} = 1\frac{265}{576} = 1.4600694444444444
Share
Copied to clipboard
\frac{81}{64}+2\times \frac{9}{8}\times \frac{1}{12}+\left(\frac{1}{12}\right)^{2}
Calculate \frac{9}{8} to the power of 2 and get \frac{81}{64}.
\frac{81}{64}+\frac{2\times 9}{8}\times \frac{1}{12}+\left(\frac{1}{12}\right)^{2}
Express 2\times \frac{9}{8} as a single fraction.
\frac{81}{64}+\frac{18}{8}\times \frac{1}{12}+\left(\frac{1}{12}\right)^{2}
Multiply 2 and 9 to get 18.
\frac{81}{64}+\frac{9}{4}\times \frac{1}{12}+\left(\frac{1}{12}\right)^{2}
Reduce the fraction \frac{18}{8} to lowest terms by extracting and canceling out 2.
\frac{81}{64}+\frac{9\times 1}{4\times 12}+\left(\frac{1}{12}\right)^{2}
Multiply \frac{9}{4} times \frac{1}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{81}{64}+\frac{9}{48}+\left(\frac{1}{12}\right)^{2}
Do the multiplications in the fraction \frac{9\times 1}{4\times 12}.
\frac{81}{64}+\frac{3}{16}+\left(\frac{1}{12}\right)^{2}
Reduce the fraction \frac{9}{48} to lowest terms by extracting and canceling out 3.
\frac{81}{64}+\frac{12}{64}+\left(\frac{1}{12}\right)^{2}
Least common multiple of 64 and 16 is 64. Convert \frac{81}{64} and \frac{3}{16} to fractions with denominator 64.
\frac{81+12}{64}+\left(\frac{1}{12}\right)^{2}
Since \frac{81}{64} and \frac{12}{64} have the same denominator, add them by adding their numerators.
\frac{93}{64}+\left(\frac{1}{12}\right)^{2}
Add 81 and 12 to get 93.
\frac{93}{64}+\frac{1}{144}
Calculate \frac{1}{12} to the power of 2 and get \frac{1}{144}.
\frac{837}{576}+\frac{4}{576}
Least common multiple of 64 and 144 is 576. Convert \frac{93}{64} and \frac{1}{144} to fractions with denominator 576.
\frac{837+4}{576}
Since \frac{837}{576} and \frac{4}{576} have the same denominator, add them by adding their numerators.
\frac{841}{576}
Add 837 and 4 to get 841.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}