Solve for x
x=\frac{40}{41}\approx 0.975609756
x=-\frac{40}{41}\approx -0.975609756
Graph
Share
Copied to clipboard
\frac{81}{1681}+x^{2}=1
Calculate \frac{9}{41} to the power of 2 and get \frac{81}{1681}.
\frac{81}{1681}+x^{2}-1=0
Subtract 1 from both sides.
-\frac{1600}{1681}+x^{2}=0
Subtract 1 from \frac{81}{1681} to get -\frac{1600}{1681}.
-1600+1681x^{2}=0
Multiply both sides by 1681.
\left(41x-40\right)\left(41x+40\right)=0
Consider -1600+1681x^{2}. Rewrite -1600+1681x^{2} as \left(41x\right)^{2}-40^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{40}{41} x=-\frac{40}{41}
To find equation solutions, solve 41x-40=0 and 41x+40=0.
\frac{81}{1681}+x^{2}=1
Calculate \frac{9}{41} to the power of 2 and get \frac{81}{1681}.
x^{2}=1-\frac{81}{1681}
Subtract \frac{81}{1681} from both sides.
x^{2}=\frac{1600}{1681}
Subtract \frac{81}{1681} from 1 to get \frac{1600}{1681}.
x=\frac{40}{41} x=-\frac{40}{41}
Take the square root of both sides of the equation.
\frac{81}{1681}+x^{2}=1
Calculate \frac{9}{41} to the power of 2 and get \frac{81}{1681}.
\frac{81}{1681}+x^{2}-1=0
Subtract 1 from both sides.
-\frac{1600}{1681}+x^{2}=0
Subtract 1 from \frac{81}{1681} to get -\frac{1600}{1681}.
x^{2}-\frac{1600}{1681}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{1600}{1681}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{1600}{1681} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{1600}{1681}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{6400}{1681}}}{2}
Multiply -4 times -\frac{1600}{1681}.
x=\frac{0±\frac{80}{41}}{2}
Take the square root of \frac{6400}{1681}.
x=\frac{40}{41}
Now solve the equation x=\frac{0±\frac{80}{41}}{2} when ± is plus.
x=-\frac{40}{41}
Now solve the equation x=\frac{0±\frac{80}{41}}{2} when ± is minus.
x=\frac{40}{41} x=-\frac{40}{41}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}