Evaluate
\frac{9y^{8}}{4x^{6}}
Differentiate w.r.t. x
-\frac{27y^{8}}{2x^{7}}
Share
Copied to clipboard
\frac{\left(81y^{16}\right)^{\frac{1}{2}}}{\left(16x^{12}\right)^{\frac{1}{2}}}
To raise \frac{81y^{16}}{16x^{12}} to a power, raise both numerator and denominator to the power and then divide.
\frac{81^{\frac{1}{2}}\left(y^{16}\right)^{\frac{1}{2}}}{\left(16x^{12}\right)^{\frac{1}{2}}}
Expand \left(81y^{16}\right)^{\frac{1}{2}}.
\frac{81^{\frac{1}{2}}y^{8}}{\left(16x^{12}\right)^{\frac{1}{2}}}
To raise a power to another power, multiply the exponents. Multiply 16 and \frac{1}{2} to get 8.
\frac{9y^{8}}{\left(16x^{12}\right)^{\frac{1}{2}}}
Calculate 81 to the power of \frac{1}{2} and get 9.
\frac{9y^{8}}{16^{\frac{1}{2}}\left(x^{12}\right)^{\frac{1}{2}}}
Expand \left(16x^{12}\right)^{\frac{1}{2}}.
\frac{9y^{8}}{16^{\frac{1}{2}}x^{6}}
To raise a power to another power, multiply the exponents. Multiply 12 and \frac{1}{2} to get 6.
\frac{9y^{8}}{4x^{6}}
Calculate 16 to the power of \frac{1}{2} and get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}