Solve for x
x = \frac{325}{97} = 3\frac{34}{97} \approx 3.350515464
x=0
Graph
Share
Copied to clipboard
\frac{\left(65-5x\right)^{2}}{13^{2}}+x^{2}=25
To raise \frac{65-5x}{13} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(65-5x\right)^{2}}{13^{2}}+\frac{x^{2}\times 13^{2}}{13^{2}}=25
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{13^{2}}{13^{2}}.
\frac{\left(65-5x\right)^{2}+x^{2}\times 13^{2}}{13^{2}}=25
Since \frac{\left(65-5x\right)^{2}}{13^{2}} and \frac{x^{2}\times 13^{2}}{13^{2}} have the same denominator, add them by adding their numerators.
\frac{4225-650x+25x^{2}+169x^{2}}{13^{2}}=25
Do the multiplications in \left(65-5x\right)^{2}+x^{2}\times 13^{2}.
\frac{4225-650x+194x^{2}}{13^{2}}=25
Combine like terms in 4225-650x+25x^{2}+169x^{2}.
\frac{4225-650x+194x^{2}}{169}=25
Calculate 13 to the power of 2 and get 169.
25-\frac{50}{13}x+\frac{194}{169}x^{2}=25
Divide each term of 4225-650x+194x^{2} by 169 to get 25-\frac{50}{13}x+\frac{194}{169}x^{2}.
25-\frac{50}{13}x+\frac{194}{169}x^{2}-25=0
Subtract 25 from both sides.
-\frac{50}{13}x+\frac{194}{169}x^{2}=0
Subtract 25 from 25 to get 0.
x\left(-\frac{50}{13}+\frac{194}{169}x\right)=0
Factor out x.
x=0 x=\frac{325}{97}
To find equation solutions, solve x=0 and -\frac{50}{13}+\frac{194x}{169}=0.
\frac{\left(65-5x\right)^{2}}{13^{2}}+x^{2}=25
To raise \frac{65-5x}{13} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(65-5x\right)^{2}}{13^{2}}+\frac{x^{2}\times 13^{2}}{13^{2}}=25
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{13^{2}}{13^{2}}.
\frac{\left(65-5x\right)^{2}+x^{2}\times 13^{2}}{13^{2}}=25
Since \frac{\left(65-5x\right)^{2}}{13^{2}} and \frac{x^{2}\times 13^{2}}{13^{2}} have the same denominator, add them by adding their numerators.
\frac{4225-650x+25x^{2}+169x^{2}}{13^{2}}=25
Do the multiplications in \left(65-5x\right)^{2}+x^{2}\times 13^{2}.
\frac{4225-650x+194x^{2}}{13^{2}}=25
Combine like terms in 4225-650x+25x^{2}+169x^{2}.
\frac{4225-650x+194x^{2}}{169}=25
Calculate 13 to the power of 2 and get 169.
25-\frac{50}{13}x+\frac{194}{169}x^{2}=25
Divide each term of 4225-650x+194x^{2} by 169 to get 25-\frac{50}{13}x+\frac{194}{169}x^{2}.
25-\frac{50}{13}x+\frac{194}{169}x^{2}-25=0
Subtract 25 from both sides.
-\frac{50}{13}x+\frac{194}{169}x^{2}=0
Subtract 25 from 25 to get 0.
\frac{194}{169}x^{2}-\frac{50}{13}x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{50}{13}\right)±\sqrt{\left(-\frac{50}{13}\right)^{2}}}{2\times \frac{194}{169}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{194}{169} for a, -\frac{50}{13} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{50}{13}\right)±\frac{50}{13}}{2\times \frac{194}{169}}
Take the square root of \left(-\frac{50}{13}\right)^{2}.
x=\frac{\frac{50}{13}±\frac{50}{13}}{2\times \frac{194}{169}}
The opposite of -\frac{50}{13} is \frac{50}{13}.
x=\frac{\frac{50}{13}±\frac{50}{13}}{\frac{388}{169}}
Multiply 2 times \frac{194}{169}.
x=\frac{\frac{100}{13}}{\frac{388}{169}}
Now solve the equation x=\frac{\frac{50}{13}±\frac{50}{13}}{\frac{388}{169}} when ± is plus. Add \frac{50}{13} to \frac{50}{13} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{325}{97}
Divide \frac{100}{13} by \frac{388}{169} by multiplying \frac{100}{13} by the reciprocal of \frac{388}{169}.
x=\frac{0}{\frac{388}{169}}
Now solve the equation x=\frac{\frac{50}{13}±\frac{50}{13}}{\frac{388}{169}} when ± is minus. Subtract \frac{50}{13} from \frac{50}{13} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by \frac{388}{169} by multiplying 0 by the reciprocal of \frac{388}{169}.
x=\frac{325}{97} x=0
The equation is now solved.
\frac{\left(65-5x\right)^{2}}{13^{2}}+x^{2}=25
To raise \frac{65-5x}{13} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(65-5x\right)^{2}}{13^{2}}+\frac{x^{2}\times 13^{2}}{13^{2}}=25
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{13^{2}}{13^{2}}.
\frac{\left(65-5x\right)^{2}+x^{2}\times 13^{2}}{13^{2}}=25
Since \frac{\left(65-5x\right)^{2}}{13^{2}} and \frac{x^{2}\times 13^{2}}{13^{2}} have the same denominator, add them by adding their numerators.
\frac{4225-650x+25x^{2}+169x^{2}}{13^{2}}=25
Do the multiplications in \left(65-5x\right)^{2}+x^{2}\times 13^{2}.
\frac{4225-650x+194x^{2}}{13^{2}}=25
Combine like terms in 4225-650x+25x^{2}+169x^{2}.
\frac{4225-650x+194x^{2}}{169}=25
Calculate 13 to the power of 2 and get 169.
25-\frac{50}{13}x+\frac{194}{169}x^{2}=25
Divide each term of 4225-650x+194x^{2} by 169 to get 25-\frac{50}{13}x+\frac{194}{169}x^{2}.
-\frac{50}{13}x+\frac{194}{169}x^{2}=25-25
Subtract 25 from both sides.
-\frac{50}{13}x+\frac{194}{169}x^{2}=0
Subtract 25 from 25 to get 0.
\frac{194}{169}x^{2}-\frac{50}{13}x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{194}{169}x^{2}-\frac{50}{13}x}{\frac{194}{169}}=\frac{0}{\frac{194}{169}}
Divide both sides of the equation by \frac{194}{169}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{50}{13}}{\frac{194}{169}}\right)x=\frac{0}{\frac{194}{169}}
Dividing by \frac{194}{169} undoes the multiplication by \frac{194}{169}.
x^{2}-\frac{325}{97}x=\frac{0}{\frac{194}{169}}
Divide -\frac{50}{13} by \frac{194}{169} by multiplying -\frac{50}{13} by the reciprocal of \frac{194}{169}.
x^{2}-\frac{325}{97}x=0
Divide 0 by \frac{194}{169} by multiplying 0 by the reciprocal of \frac{194}{169}.
x^{2}-\frac{325}{97}x+\left(-\frac{325}{194}\right)^{2}=\left(-\frac{325}{194}\right)^{2}
Divide -\frac{325}{97}, the coefficient of the x term, by 2 to get -\frac{325}{194}. Then add the square of -\frac{325}{194} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{325}{97}x+\frac{105625}{37636}=\frac{105625}{37636}
Square -\frac{325}{194} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{325}{194}\right)^{2}=\frac{105625}{37636}
Factor x^{2}-\frac{325}{97}x+\frac{105625}{37636}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{325}{194}\right)^{2}}=\sqrt{\frac{105625}{37636}}
Take the square root of both sides of the equation.
x-\frac{325}{194}=\frac{325}{194} x-\frac{325}{194}=-\frac{325}{194}
Simplify.
x=\frac{325}{97} x=0
Add \frac{325}{194} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}