Evaluate
\frac{2a^{5}}{3b^{3}}
Differentiate w.r.t. b
-\frac{2a^{5}}{b^{4}}
Share
Copied to clipboard
\left(\frac{3a^{-2}b^{3}}{2a^{3}}\right)^{-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(\frac{3b^{3}}{2a^{5}}\right)^{-1}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(3b^{3}\right)^{-1}}{\left(2a^{5}\right)^{-1}}
To raise \frac{3b^{3}}{2a^{5}} to a power, raise both numerator and denominator to the power and then divide.
\frac{3^{-1}\left(b^{3}\right)^{-1}}{\left(2a^{5}\right)^{-1}}
Expand \left(3b^{3}\right)^{-1}.
\frac{3^{-1}b^{-3}}{\left(2a^{5}\right)^{-1}}
To raise a power to another power, multiply the exponents. Multiply 3 and -1 to get -3.
\frac{\frac{1}{3}b^{-3}}{\left(2a^{5}\right)^{-1}}
Calculate 3 to the power of -1 and get \frac{1}{3}.
\frac{\frac{1}{3}b^{-3}}{2^{-1}\left(a^{5}\right)^{-1}}
Expand \left(2a^{5}\right)^{-1}.
\frac{\frac{1}{3}b^{-3}}{2^{-1}a^{-5}}
To raise a power to another power, multiply the exponents. Multiply 5 and -1 to get -5.
\frac{\frac{1}{3}b^{-3}}{\frac{1}{2}a^{-5}}
Calculate 2 to the power of -1 and get \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}