Skip to main content
Solve for x
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{14348907}{30517578125}\times 3=\left(\frac{5}{3}\right)^{8x}
Calculate \frac{3}{5} to the power of 15 and get \frac{14348907}{30517578125}.
\frac{43046721}{30517578125}=\left(\frac{5}{3}\right)^{8x}
Multiply \frac{14348907}{30517578125} and 3 to get \frac{43046721}{30517578125}.
\left(\frac{5}{3}\right)^{8x}=\frac{43046721}{30517578125}
Swap sides so that all variable terms are on the left hand side.
\log(\left(\frac{5}{3}\right)^{8x})=\log(\frac{43046721}{30517578125})
Take the logarithm of both sides of the equation.
8x\log(\frac{5}{3})=\log(\frac{43046721}{30517578125})
The logarithm of a number raised to a power is the power times the logarithm of the number.
8x=\frac{\log(\frac{43046721}{30517578125})}{\log(\frac{5}{3})}
Divide both sides by \log(\frac{5}{3}).
8x=\log_{\frac{5}{3}}\left(\frac{43046721}{30517578125}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\ln(\frac{43046721}{30517578125})}{8\ln(\frac{5}{3})}
Divide both sides by 8.