Solve for a
a=-4
a = \frac{28}{25} = 1\frac{3}{25} = 1.12
Share
Copied to clipboard
\frac{9}{16}a^{2}+\frac{9}{2}a+9+a^{2}=16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{3}{4}a+3\right)^{2}.
\frac{25}{16}a^{2}+\frac{9}{2}a+9=16
Combine \frac{9}{16}a^{2} and a^{2} to get \frac{25}{16}a^{2}.
\frac{25}{16}a^{2}+\frac{9}{2}a+9-16=0
Subtract 16 from both sides.
\frac{25}{16}a^{2}+\frac{9}{2}a-7=0
Subtract 16 from 9 to get -7.
a=\frac{-\frac{9}{2}±\sqrt{\left(\frac{9}{2}\right)^{2}-4\times \frac{25}{16}\left(-7\right)}}{2\times \frac{25}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{25}{16} for a, \frac{9}{2} for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}-4\times \frac{25}{16}\left(-7\right)}}{2\times \frac{25}{16}}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
a=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}-\frac{25}{4}\left(-7\right)}}{2\times \frac{25}{16}}
Multiply -4 times \frac{25}{16}.
a=\frac{-\frac{9}{2}±\sqrt{\frac{81+175}{4}}}{2\times \frac{25}{16}}
Multiply -\frac{25}{4} times -7.
a=\frac{-\frac{9}{2}±\sqrt{64}}{2\times \frac{25}{16}}
Add \frac{81}{4} to \frac{175}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
a=\frac{-\frac{9}{2}±8}{2\times \frac{25}{16}}
Take the square root of 64.
a=\frac{-\frac{9}{2}±8}{\frac{25}{8}}
Multiply 2 times \frac{25}{16}.
a=\frac{\frac{7}{2}}{\frac{25}{8}}
Now solve the equation a=\frac{-\frac{9}{2}±8}{\frac{25}{8}} when ± is plus. Add -\frac{9}{2} to 8.
a=\frac{28}{25}
Divide \frac{7}{2} by \frac{25}{8} by multiplying \frac{7}{2} by the reciprocal of \frac{25}{8}.
a=-\frac{\frac{25}{2}}{\frac{25}{8}}
Now solve the equation a=\frac{-\frac{9}{2}±8}{\frac{25}{8}} when ± is minus. Subtract 8 from -\frac{9}{2}.
a=-4
Divide -\frac{25}{2} by \frac{25}{8} by multiplying -\frac{25}{2} by the reciprocal of \frac{25}{8}.
a=\frac{28}{25} a=-4
The equation is now solved.
\frac{9}{16}a^{2}+\frac{9}{2}a+9+a^{2}=16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{3}{4}a+3\right)^{2}.
\frac{25}{16}a^{2}+\frac{9}{2}a+9=16
Combine \frac{9}{16}a^{2} and a^{2} to get \frac{25}{16}a^{2}.
\frac{25}{16}a^{2}+\frac{9}{2}a=16-9
Subtract 9 from both sides.
\frac{25}{16}a^{2}+\frac{9}{2}a=7
Subtract 9 from 16 to get 7.
\frac{\frac{25}{16}a^{2}+\frac{9}{2}a}{\frac{25}{16}}=\frac{7}{\frac{25}{16}}
Divide both sides of the equation by \frac{25}{16}, which is the same as multiplying both sides by the reciprocal of the fraction.
a^{2}+\frac{\frac{9}{2}}{\frac{25}{16}}a=\frac{7}{\frac{25}{16}}
Dividing by \frac{25}{16} undoes the multiplication by \frac{25}{16}.
a^{2}+\frac{72}{25}a=\frac{7}{\frac{25}{16}}
Divide \frac{9}{2} by \frac{25}{16} by multiplying \frac{9}{2} by the reciprocal of \frac{25}{16}.
a^{2}+\frac{72}{25}a=\frac{112}{25}
Divide 7 by \frac{25}{16} by multiplying 7 by the reciprocal of \frac{25}{16}.
a^{2}+\frac{72}{25}a+\left(\frac{36}{25}\right)^{2}=\frac{112}{25}+\left(\frac{36}{25}\right)^{2}
Divide \frac{72}{25}, the coefficient of the x term, by 2 to get \frac{36}{25}. Then add the square of \frac{36}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{72}{25}a+\frac{1296}{625}=\frac{112}{25}+\frac{1296}{625}
Square \frac{36}{25} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{72}{25}a+\frac{1296}{625}=\frac{4096}{625}
Add \frac{112}{25} to \frac{1296}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{36}{25}\right)^{2}=\frac{4096}{625}
Factor a^{2}+\frac{72}{25}a+\frac{1296}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{36}{25}\right)^{2}}=\sqrt{\frac{4096}{625}}
Take the square root of both sides of the equation.
a+\frac{36}{25}=\frac{64}{25} a+\frac{36}{25}=-\frac{64}{25}
Simplify.
a=\frac{28}{25} a=-4
Subtract \frac{36}{25} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}