Solve for t
t=\frac{1}{3}\approx 0.333333333
t=\frac{2}{3}\approx 0.666666667
Share
Copied to clipboard
\frac{9}{4}-3t+t^{2}+\left(\frac{1}{2}+2t-1\right)^{2}=\left(\frac{5\sqrt{2}}{6}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{3}{2}-t\right)^{2}.
\frac{9}{4}-3t+t^{2}+\left(-\frac{1}{2}+2t\right)^{2}=\left(\frac{5\sqrt{2}}{6}\right)^{2}
Subtract 1 from \frac{1}{2} to get -\frac{1}{2}.
\frac{9}{4}-3t+t^{2}+\frac{1}{4}-2t+4t^{2}=\left(\frac{5\sqrt{2}}{6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\frac{1}{2}+2t\right)^{2}.
\frac{5}{2}-3t+t^{2}-2t+4t^{2}=\left(\frac{5\sqrt{2}}{6}\right)^{2}
Add \frac{9}{4} and \frac{1}{4} to get \frac{5}{2}.
\frac{5}{2}-5t+t^{2}+4t^{2}=\left(\frac{5\sqrt{2}}{6}\right)^{2}
Combine -3t and -2t to get -5t.
\frac{5}{2}-5t+5t^{2}=\left(\frac{5\sqrt{2}}{6}\right)^{2}
Combine t^{2} and 4t^{2} to get 5t^{2}.
\frac{5}{2}-5t+5t^{2}=\frac{\left(5\sqrt{2}\right)^{2}}{6^{2}}
To raise \frac{5\sqrt{2}}{6} to a power, raise both numerator and denominator to the power and then divide.
\frac{5}{2}-5t+5t^{2}=\frac{5^{2}\left(\sqrt{2}\right)^{2}}{6^{2}}
Expand \left(5\sqrt{2}\right)^{2}.
\frac{5}{2}-5t+5t^{2}=\frac{25\left(\sqrt{2}\right)^{2}}{6^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{5}{2}-5t+5t^{2}=\frac{25\times 2}{6^{2}}
The square of \sqrt{2} is 2.
\frac{5}{2}-5t+5t^{2}=\frac{50}{6^{2}}
Multiply 25 and 2 to get 50.
\frac{5}{2}-5t+5t^{2}=\frac{50}{36}
Calculate 6 to the power of 2 and get 36.
\frac{5}{2}-5t+5t^{2}=\frac{25}{18}
Reduce the fraction \frac{50}{36} to lowest terms by extracting and canceling out 2.
\frac{5}{2}-5t+5t^{2}-\frac{25}{18}=0
Subtract \frac{25}{18} from both sides.
\frac{10}{9}-5t+5t^{2}=0
Subtract \frac{25}{18} from \frac{5}{2} to get \frac{10}{9}.
5t^{2}-5t+\frac{10}{9}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 5\times \frac{10}{9}}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -5 for b, and \frac{10}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-5\right)±\sqrt{25-4\times 5\times \frac{10}{9}}}{2\times 5}
Square -5.
t=\frac{-\left(-5\right)±\sqrt{25-20\times \frac{10}{9}}}{2\times 5}
Multiply -4 times 5.
t=\frac{-\left(-5\right)±\sqrt{25-\frac{200}{9}}}{2\times 5}
Multiply -20 times \frac{10}{9}.
t=\frac{-\left(-5\right)±\sqrt{\frac{25}{9}}}{2\times 5}
Add 25 to -\frac{200}{9}.
t=\frac{-\left(-5\right)±\frac{5}{3}}{2\times 5}
Take the square root of \frac{25}{9}.
t=\frac{5±\frac{5}{3}}{2\times 5}
The opposite of -5 is 5.
t=\frac{5±\frac{5}{3}}{10}
Multiply 2 times 5.
t=\frac{\frac{20}{3}}{10}
Now solve the equation t=\frac{5±\frac{5}{3}}{10} when ± is plus. Add 5 to \frac{5}{3}.
t=\frac{2}{3}
Divide \frac{20}{3} by 10.
t=\frac{\frac{10}{3}}{10}
Now solve the equation t=\frac{5±\frac{5}{3}}{10} when ± is minus. Subtract \frac{5}{3} from 5.
t=\frac{1}{3}
Divide \frac{10}{3} by 10.
t=\frac{2}{3} t=\frac{1}{3}
The equation is now solved.
\frac{9}{4}-3t+t^{2}+\left(\frac{1}{2}+2t-1\right)^{2}=\left(\frac{5\sqrt{2}}{6}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{3}{2}-t\right)^{2}.
\frac{9}{4}-3t+t^{2}+\left(-\frac{1}{2}+2t\right)^{2}=\left(\frac{5\sqrt{2}}{6}\right)^{2}
Subtract 1 from \frac{1}{2} to get -\frac{1}{2}.
\frac{9}{4}-3t+t^{2}+\frac{1}{4}-2t+4t^{2}=\left(\frac{5\sqrt{2}}{6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\frac{1}{2}+2t\right)^{2}.
\frac{5}{2}-3t+t^{2}-2t+4t^{2}=\left(\frac{5\sqrt{2}}{6}\right)^{2}
Add \frac{9}{4} and \frac{1}{4} to get \frac{5}{2}.
\frac{5}{2}-5t+t^{2}+4t^{2}=\left(\frac{5\sqrt{2}}{6}\right)^{2}
Combine -3t and -2t to get -5t.
\frac{5}{2}-5t+5t^{2}=\left(\frac{5\sqrt{2}}{6}\right)^{2}
Combine t^{2} and 4t^{2} to get 5t^{2}.
\frac{5}{2}-5t+5t^{2}=\frac{\left(5\sqrt{2}\right)^{2}}{6^{2}}
To raise \frac{5\sqrt{2}}{6} to a power, raise both numerator and denominator to the power and then divide.
\frac{5}{2}-5t+5t^{2}=\frac{5^{2}\left(\sqrt{2}\right)^{2}}{6^{2}}
Expand \left(5\sqrt{2}\right)^{2}.
\frac{5}{2}-5t+5t^{2}=\frac{25\left(\sqrt{2}\right)^{2}}{6^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{5}{2}-5t+5t^{2}=\frac{25\times 2}{6^{2}}
The square of \sqrt{2} is 2.
\frac{5}{2}-5t+5t^{2}=\frac{50}{6^{2}}
Multiply 25 and 2 to get 50.
\frac{5}{2}-5t+5t^{2}=\frac{50}{36}
Calculate 6 to the power of 2 and get 36.
\frac{5}{2}-5t+5t^{2}=\frac{25}{18}
Reduce the fraction \frac{50}{36} to lowest terms by extracting and canceling out 2.
-5t+5t^{2}=\frac{25}{18}-\frac{5}{2}
Subtract \frac{5}{2} from both sides.
-5t+5t^{2}=-\frac{10}{9}
Subtract \frac{5}{2} from \frac{25}{18} to get -\frac{10}{9}.
5t^{2}-5t=-\frac{10}{9}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5t^{2}-5t}{5}=-\frac{\frac{10}{9}}{5}
Divide both sides by 5.
t^{2}+\left(-\frac{5}{5}\right)t=-\frac{\frac{10}{9}}{5}
Dividing by 5 undoes the multiplication by 5.
t^{2}-t=-\frac{\frac{10}{9}}{5}
Divide -5 by 5.
t^{2}-t=-\frac{2}{9}
Divide -\frac{10}{9} by 5.
t^{2}-t+\left(-\frac{1}{2}\right)^{2}=-\frac{2}{9}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-t+\frac{1}{4}=-\frac{2}{9}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}-t+\frac{1}{4}=\frac{1}{36}
Add -\frac{2}{9} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{1}{2}\right)^{2}=\frac{1}{36}
Factor t^{2}-t+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{36}}
Take the square root of both sides of the equation.
t-\frac{1}{2}=\frac{1}{6} t-\frac{1}{2}=-\frac{1}{6}
Simplify.
t=\frac{2}{3} t=\frac{1}{3}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}