Evaluate
-\frac{5\sqrt{3}}{2}+5\approx 0.669872981
Expand
-\frac{5 \sqrt{3}}{2} + 5 = 0.669872981
Share
Copied to clipboard
\left(\frac{3}{2}\times \frac{\sqrt{5}}{\sqrt{3}}-\sqrt{\frac{5}{4}}\right)^{2}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
\left(\frac{3}{2}\times \frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\sqrt{\frac{5}{4}}\right)^{2}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(\frac{3}{2}\times \frac{\sqrt{5}\sqrt{3}}{3}-\sqrt{\frac{5}{4}}\right)^{2}
The square of \sqrt{3} is 3.
\left(\frac{3}{2}\times \frac{\sqrt{15}}{3}-\sqrt{\frac{5}{4}}\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\left(\frac{3\sqrt{15}}{2\times 3}-\sqrt{\frac{5}{4}}\right)^{2}
Multiply \frac{3}{2} times \frac{\sqrt{15}}{3} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{\sqrt{15}}{2}-\sqrt{\frac{5}{4}}\right)^{2}
Cancel out 3 in both numerator and denominator.
\left(\frac{\sqrt{15}}{2}-\frac{\sqrt{5}}{\sqrt{4}}\right)^{2}
Rewrite the square root of the division \sqrt{\frac{5}{4}} as the division of square roots \frac{\sqrt{5}}{\sqrt{4}}.
\left(\frac{\sqrt{15}}{2}-\frac{\sqrt{5}}{2}\right)^{2}
Calculate the square root of 4 and get 2.
\left(\frac{\sqrt{15}-\sqrt{5}}{2}\right)^{2}
Since \frac{\sqrt{15}}{2} and \frac{\sqrt{5}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{15}-\sqrt{5}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{15}-\sqrt{5}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{15}\right)^{2}-2\sqrt{15}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{15}-\sqrt{5}\right)^{2}.
\frac{15-2\sqrt{15}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2^{2}}
The square of \sqrt{15} is 15.
\frac{15-2\sqrt{5}\sqrt{3}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2^{2}}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{15-2\times 5\sqrt{3}+\left(\sqrt{5}\right)^{2}}{2^{2}}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{15-10\sqrt{3}+\left(\sqrt{5}\right)^{2}}{2^{2}}
Multiply -2 and 5 to get -10.
\frac{15-10\sqrt{3}+5}{2^{2}}
The square of \sqrt{5} is 5.
\frac{20-10\sqrt{3}}{2^{2}}
Add 15 and 5 to get 20.
\frac{20-10\sqrt{3}}{4}
Calculate 2 to the power of 2 and get 4.
\left(\frac{3}{2}\times \frac{\sqrt{5}}{\sqrt{3}}-\sqrt{\frac{5}{4}}\right)^{2}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
\left(\frac{3}{2}\times \frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\sqrt{\frac{5}{4}}\right)^{2}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(\frac{3}{2}\times \frac{\sqrt{5}\sqrt{3}}{3}-\sqrt{\frac{5}{4}}\right)^{2}
The square of \sqrt{3} is 3.
\left(\frac{3}{2}\times \frac{\sqrt{15}}{3}-\sqrt{\frac{5}{4}}\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\left(\frac{3\sqrt{15}}{2\times 3}-\sqrt{\frac{5}{4}}\right)^{2}
Multiply \frac{3}{2} times \frac{\sqrt{15}}{3} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{\sqrt{15}}{2}-\sqrt{\frac{5}{4}}\right)^{2}
Cancel out 3 in both numerator and denominator.
\left(\frac{\sqrt{15}}{2}-\frac{\sqrt{5}}{\sqrt{4}}\right)^{2}
Rewrite the square root of the division \sqrt{\frac{5}{4}} as the division of square roots \frac{\sqrt{5}}{\sqrt{4}}.
\left(\frac{\sqrt{15}}{2}-\frac{\sqrt{5}}{2}\right)^{2}
Calculate the square root of 4 and get 2.
\left(\frac{\sqrt{15}-\sqrt{5}}{2}\right)^{2}
Since \frac{\sqrt{15}}{2} and \frac{\sqrt{5}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{15}-\sqrt{5}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{15}-\sqrt{5}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{15}\right)^{2}-2\sqrt{15}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{15}-\sqrt{5}\right)^{2}.
\frac{15-2\sqrt{15}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2^{2}}
The square of \sqrt{15} is 15.
\frac{15-2\sqrt{5}\sqrt{3}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2^{2}}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{15-2\times 5\sqrt{3}+\left(\sqrt{5}\right)^{2}}{2^{2}}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{15-10\sqrt{3}+\left(\sqrt{5}\right)^{2}}{2^{2}}
Multiply -2 and 5 to get -10.
\frac{15-10\sqrt{3}+5}{2^{2}}
The square of \sqrt{5} is 5.
\frac{20-10\sqrt{3}}{2^{2}}
Add 15 and 5 to get 20.
\frac{20-10\sqrt{3}}{4}
Calculate 2 to the power of 2 and get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}