Verify
false
Share
Copied to clipboard
\frac{9}{4}+3\times \frac{3}{2}=2
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{9}{4}+\frac{3\times 3}{2}=2
Express 3\times \frac{3}{2} as a single fraction.
\frac{9}{4}+\frac{9}{2}=2
Multiply 3 and 3 to get 9.
\frac{9}{4}+\frac{18}{4}=2
Least common multiple of 4 and 2 is 4. Convert \frac{9}{4} and \frac{9}{2} to fractions with denominator 4.
\frac{9+18}{4}=2
Since \frac{9}{4} and \frac{18}{4} have the same denominator, add them by adding their numerators.
\frac{27}{4}=2
Add 9 and 18 to get 27.
\frac{27}{4}=\frac{8}{4}
Convert 2 to fraction \frac{8}{4}.
\text{false}
Compare \frac{27}{4} and \frac{8}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}