Solve for k
k=\frac{63x^{2}}{50+40x-x^{2}}
x\neq 0\text{ and }x\neq 15\sqrt{2}+20\text{ and }x\neq 20-15\sqrt{2}
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{5\left(3\sqrt{\frac{2\left(k+7\right)}{k}}+4\right)k}{k+63}\text{, }&k\neq -63\text{ and }k\neq 0\\x=-\frac{5\sqrt{2}}{3\sqrt{\frac{k+7}{k}}+2\sqrt{2}}\text{, }&k\neq 0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{10}{3\sqrt{\frac{2\left(k+7\right)}{k}}+4}\text{, }&k\leq -7\\x=\frac{5\left(3\sqrt{\frac{2\left(k+7\right)}{k}}+4\right)k}{k+63}\text{, }&k\leq -7\text{ and }k\neq -63\\x=\frac{5\sqrt{k}\left(3\sqrt{2\left(k+7\right)}+4\sqrt{k}\right)}{k+63}\text{; }x=-\frac{10\sqrt{k}}{3\sqrt{2\left(k+7\right)}+4\sqrt{k}}\text{, }&k>0\end{matrix}\right.
Graph
Share
Copied to clipboard
2k\times \left(\frac{2x+5}{3x}\right)^{2}=k+7
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2k.
2k\times \frac{\left(2x+5\right)^{2}}{\left(3x\right)^{2}}=k+7
To raise \frac{2x+5}{3x} to a power, raise both numerator and denominator to the power and then divide.
\frac{2\left(2x+5\right)^{2}}{\left(3x\right)^{2}}k=k+7
Express 2\times \frac{\left(2x+5\right)^{2}}{\left(3x\right)^{2}} as a single fraction.
\frac{2\left(4x^{2}+20x+25\right)}{\left(3x\right)^{2}}k=k+7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+5\right)^{2}.
\frac{2\left(4x^{2}+20x+25\right)}{3^{2}x^{2}}k=k+7
Expand \left(3x\right)^{2}.
\frac{2\left(4x^{2}+20x+25\right)}{9x^{2}}k=k+7
Calculate 3 to the power of 2 and get 9.
\frac{2\left(4x^{2}+20x+25\right)k}{9x^{2}}=k+7
Express \frac{2\left(4x^{2}+20x+25\right)}{9x^{2}}k as a single fraction.
\frac{2\left(4x^{2}+20x+25\right)k}{9x^{2}}-k=7
Subtract k from both sides.
\frac{\left(8x^{2}+40x+50\right)k}{9x^{2}}-k=7
Use the distributive property to multiply 2 by 4x^{2}+20x+25.
\frac{8x^{2}k+40xk+50k}{9x^{2}}-k=7
Use the distributive property to multiply 8x^{2}+40x+50 by k.
\frac{8x^{2}k+40xk+50k}{9x^{2}}-\frac{k\times 9x^{2}}{9x^{2}}=7
To add or subtract expressions, expand them to make their denominators the same. Multiply k times \frac{9x^{2}}{9x^{2}}.
\frac{8x^{2}k+40xk+50k-k\times 9x^{2}}{9x^{2}}=7
Since \frac{8x^{2}k+40xk+50k}{9x^{2}} and \frac{k\times 9x^{2}}{9x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{8x^{2}k+40xk+50k-9x^{2}k}{9x^{2}}=7
Do the multiplications in 8x^{2}k+40xk+50k-k\times 9x^{2}.
\frac{50k-x^{2}k+40xk}{9x^{2}}=7
Combine like terms in 8x^{2}k+40xk+50k-9x^{2}k.
50k-x^{2}k+40xk=63x^{2}
Multiply both sides of the equation by 9x^{2}.
\left(50-x^{2}+40x\right)k=63x^{2}
Combine all terms containing k.
\left(50+40x-x^{2}\right)k=63x^{2}
The equation is in standard form.
\frac{\left(50+40x-x^{2}\right)k}{50+40x-x^{2}}=\frac{63x^{2}}{50+40x-x^{2}}
Divide both sides by -x^{2}+40x+50.
k=\frac{63x^{2}}{50+40x-x^{2}}
Dividing by -x^{2}+40x+50 undoes the multiplication by -x^{2}+40x+50.
k=\frac{63x^{2}}{50+40x-x^{2}}\text{, }k\neq 0
Variable k cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}