Evaluate
\frac{1307}{180}\approx 7.261111111
Factor
\frac{1307}{2 ^ {2} \cdot 3 ^ {2} \cdot 5} = 7\frac{47}{180} = 7.261111111111111
Share
Copied to clipboard
\left(\frac{2\left(2-3\right)}{3}-2\right)^{2}-\sqrt{\frac{1}{8}}\sqrt{\frac{1}{2}}+1-\frac{3}{5}
Divide 2 by \frac{3}{2-3} by multiplying 2 by the reciprocal of \frac{3}{2-3}.
\left(\frac{2\left(-1\right)}{3}-2\right)^{2}-\sqrt{\frac{1}{8}}\sqrt{\frac{1}{2}}+1-\frac{3}{5}
Subtract 3 from 2 to get -1.
\left(\frac{-2}{3}-2\right)^{2}-\sqrt{\frac{1}{8}}\sqrt{\frac{1}{2}}+1-\frac{3}{5}
Multiply 2 and -1 to get -2.
\left(-\frac{2}{3}-2\right)^{2}-\sqrt{\frac{1}{8}}\sqrt{\frac{1}{2}}+1-\frac{3}{5}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\left(-\frac{8}{3}\right)^{2}-\sqrt{\frac{1}{8}}\sqrt{\frac{1}{2}}+1-\frac{3}{5}
Subtract 2 from -\frac{2}{3} to get -\frac{8}{3}.
\frac{64}{9}-\sqrt{\frac{1}{8}}\sqrt{\frac{1}{2}}+1-\frac{3}{5}
Calculate -\frac{8}{3} to the power of 2 and get \frac{64}{9}.
\frac{64}{9}-\sqrt{\frac{1}{16}}+1-\frac{3}{5}
To multiply \sqrt{\frac{1}{8}} and \sqrt{\frac{1}{2}}, multiply the numbers under the square root.
\frac{64}{9}-\frac{1}{4}+1-\frac{3}{5}
Rewrite the square root of the division \frac{1}{16} as the division of square roots \frac{\sqrt{1}}{\sqrt{16}}. Take the square root of both numerator and denominator.
\frac{247}{36}+1-\frac{3}{5}
Subtract \frac{1}{4} from \frac{64}{9} to get \frac{247}{36}.
\frac{283}{36}-\frac{3}{5}
Add \frac{247}{36} and 1 to get \frac{283}{36}.
\frac{1307}{180}
Subtract \frac{3}{5} from \frac{283}{36} to get \frac{1307}{180}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}