Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(16-9i\right)\left(7-24i\right)}{\left(7+24i\right)\left(7-24i\right)}\right)^{105}
Multiply both numerator and denominator of \frac{16-9i}{7+24i} by the complex conjugate of the denominator, 7-24i.
\left(\frac{-104-447i}{625}\right)^{105}
Do the multiplications in \frac{\left(16-9i\right)\left(7-24i\right)}{\left(7+24i\right)\left(7-24i\right)}.
\left(-\frac{104}{625}-\frac{447}{625}i\right)^{105}
Divide -104-447i by 625 to get -\frac{104}{625}-\frac{447}{625}i.
\frac{2758570523221228254653658580592207393559937113741778493909277110155467379905748158328944091119208011380526418689386369194120615928712748431394130667832365004115449116932168023387883004411232875744854179438857428716462259875642915809050068303225166239219747555650854770004315958616}{369319144711429431230357230499873337513944548802260481404091161856118807611244770513790343692494830790334467173343130830704768791102633506347877316537222909164661032225659446977465823972051120194512306942601675262468459144838234791452051270522561463222933897387889601304777897894382476806640625}-\frac{1300592443689656536957039667520049400002705835035476339984900953139351539227387085388639870251316103078893250574467884594320085058364724737781052952057737241509664265887621906560842455973786021532061972079023359871082195048298060798215399632756120632506441909245967705268922807487}{369319144711429431230357230499873337513944548802260481404091161856118807611244770513790343692494830790334467173343130830704768791102633506347877316537222909164661032225659446977465823972051120194512306942601675262468459144838234791452051270522561463222933897387889601304777897894382476806640625}i
Calculate -\frac{104}{625}-\frac{447}{625}i to the power of 105 and get \frac{2758570523221228254653658580592207393559937113741778493909277110155467379905748158328944091119208011380526418689386369194120615928712748431394130667832365004115449116932168023387883004411232875744854179438857428716462259875642915809050068303225166239219747555650854770004315958616}{369319144711429431230357230499873337513944548802260481404091161856118807611244770513790343692494830790334467173343130830704768791102633506347877316537222909164661032225659446977465823972051120194512306942601675262468459144838234791452051270522561463222933897387889601304777897894382476806640625}-\frac{1300592443689656536957039667520049400002705835035476339984900953139351539227387085388639870251316103078893250574467884594320085058364724737781052952057737241509664265887621906560842455973786021532061972079023359871082195048298060798215399632756120632506441909245967705268922807487}{369319144711429431230357230499873337513944548802260481404091161856118807611244770513790343692494830790334467173343130830704768791102633506347877316537222909164661032225659446977465823972051120194512306942601675262468459144838234791452051270522561463222933897387889601304777897894382476806640625}i.
Re(\left(\frac{\left(16-9i\right)\left(7-24i\right)}{\left(7+24i\right)\left(7-24i\right)}\right)^{105})
Multiply both numerator and denominator of \frac{16-9i}{7+24i} by the complex conjugate of the denominator, 7-24i.
Re(\left(\frac{-104-447i}{625}\right)^{105})
Do the multiplications in \frac{\left(16-9i\right)\left(7-24i\right)}{\left(7+24i\right)\left(7-24i\right)}.
Re(\left(-\frac{104}{625}-\frac{447}{625}i\right)^{105})
Divide -104-447i by 625 to get -\frac{104}{625}-\frac{447}{625}i.
Re(\frac{2758570523221228254653658580592207393559937113741778493909277110155467379905748158328944091119208011380526418689386369194120615928712748431394130667832365004115449116932168023387883004411232875744854179438857428716462259875642915809050068303225166239219747555650854770004315958616}{369319144711429431230357230499873337513944548802260481404091161856118807611244770513790343692494830790334467173343130830704768791102633506347877316537222909164661032225659446977465823972051120194512306942601675262468459144838234791452051270522561463222933897387889601304777897894382476806640625}-\frac{1300592443689656536957039667520049400002705835035476339984900953139351539227387085388639870251316103078893250574467884594320085058364724737781052952057737241509664265887621906560842455973786021532061972079023359871082195048298060798215399632756120632506441909245967705268922807487}{369319144711429431230357230499873337513944548802260481404091161856118807611244770513790343692494830790334467173343130830704768791102633506347877316537222909164661032225659446977465823972051120194512306942601675262468459144838234791452051270522561463222933897387889601304777897894382476806640625}i)
Calculate -\frac{104}{625}-\frac{447}{625}i to the power of 105 and get \frac{2758570523221228254653658580592207393559937113741778493909277110155467379905748158328944091119208011380526418689386369194120615928712748431394130667832365004115449116932168023387883004411232875744854179438857428716462259875642915809050068303225166239219747555650854770004315958616}{369319144711429431230357230499873337513944548802260481404091161856118807611244770513790343692494830790334467173343130830704768791102633506347877316537222909164661032225659446977465823972051120194512306942601675262468459144838234791452051270522561463222933897387889601304777897894382476806640625}-\frac{1300592443689656536957039667520049400002705835035476339984900953139351539227387085388639870251316103078893250574467884594320085058364724737781052952057737241509664265887621906560842455973786021532061972079023359871082195048298060798215399632756120632506441909245967705268922807487}{369319144711429431230357230499873337513944548802260481404091161856118807611244770513790343692494830790334467173343130830704768791102633506347877316537222909164661032225659446977465823972051120194512306942601675262468459144838234791452051270522561463222933897387889601304777897894382476806640625}i.
\frac{2758570523221228254653658580592207393559937113741778493909277110155467379905748158328944091119208011380526418689386369194120615928712748431394130667832365004115449116932168023387883004411232875744854179438857428716462259875642915809050068303225166239219747555650854770004315958616}{369319144711429431230357230499873337513944548802260481404091161856118807611244770513790343692494830790334467173343130830704768791102633506347877316537222909164661032225659446977465823972051120194512306942601675262468459144838234791452051270522561463222933897387889601304777897894382476806640625}
The real part of \frac{2758570523221228254653658580592207393559937113741778493909277110155467379905748158328944091119208011380526418689386369194120615928712748431394130667832365004115449116932168023387883004411232875744854179438857428716462259875642915809050068303225166239219747555650854770004315958616}{369319144711429431230357230499873337513944548802260481404091161856118807611244770513790343692494830790334467173343130830704768791102633506347877316537222909164661032225659446977465823972051120194512306942601675262468459144838234791452051270522561463222933897387889601304777897894382476806640625}-\frac{1300592443689656536957039667520049400002705835035476339984900953139351539227387085388639870251316103078893250574467884594320085058364724737781052952057737241509664265887621906560842455973786021532061972079023359871082195048298060798215399632756120632506441909245967705268922807487}{369319144711429431230357230499873337513944548802260481404091161856118807611244770513790343692494830790334467173343130830704768791102633506347877316537222909164661032225659446977465823972051120194512306942601675262468459144838234791452051270522561463222933897387889601304777897894382476806640625}i is \frac{2758570523221228254653658580592207393559937113741778493909277110155467379905748158328944091119208011380526418689386369194120615928712748431394130667832365004115449116932168023387883004411232875744854179438857428716462259875642915809050068303225166239219747555650854770004315958616}{369319144711429431230357230499873337513944548802260481404091161856118807611244770513790343692494830790334467173343130830704768791102633506347877316537222909164661032225659446977465823972051120194512306942601675262468459144838234791452051270522561463222933897387889601304777897894382476806640625}.