Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{8}{5}x\right)^{2}+x^{2}=4318^{2}
Divide 16x by 10 to get \frac{8}{5}x.
\left(\frac{8}{5}\right)^{2}x^{2}+x^{2}=4318^{2}
Expand \left(\frac{8}{5}x\right)^{2}.
\frac{64}{25}x^{2}+x^{2}=4318^{2}
Calculate \frac{8}{5} to the power of 2 and get \frac{64}{25}.
\frac{89}{25}x^{2}=4318^{2}
Combine \frac{64}{25}x^{2} and x^{2} to get \frac{89}{25}x^{2}.
\frac{89}{25}x^{2}=18645124
Calculate 4318 to the power of 2 and get 18645124.
x^{2}=18645124\times \frac{25}{89}
Multiply both sides by \frac{25}{89}, the reciprocal of \frac{89}{25}.
x^{2}=\frac{466128100}{89}
Multiply 18645124 and \frac{25}{89} to get \frac{466128100}{89}.
x=\frac{21590\sqrt{89}}{89} x=-\frac{21590\sqrt{89}}{89}
Take the square root of both sides of the equation.
\left(\frac{8}{5}x\right)^{2}+x^{2}=4318^{2}
Divide 16x by 10 to get \frac{8}{5}x.
\left(\frac{8}{5}\right)^{2}x^{2}+x^{2}=4318^{2}
Expand \left(\frac{8}{5}x\right)^{2}.
\frac{64}{25}x^{2}+x^{2}=4318^{2}
Calculate \frac{8}{5} to the power of 2 and get \frac{64}{25}.
\frac{89}{25}x^{2}=4318^{2}
Combine \frac{64}{25}x^{2} and x^{2} to get \frac{89}{25}x^{2}.
\frac{89}{25}x^{2}=18645124
Calculate 4318 to the power of 2 and get 18645124.
\frac{89}{25}x^{2}-18645124=0
Subtract 18645124 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{89}{25}\left(-18645124\right)}}{2\times \frac{89}{25}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{89}{25} for a, 0 for b, and -18645124 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{89}{25}\left(-18645124\right)}}{2\times \frac{89}{25}}
Square 0.
x=\frac{0±\sqrt{-\frac{356}{25}\left(-18645124\right)}}{2\times \frac{89}{25}}
Multiply -4 times \frac{89}{25}.
x=\frac{0±\sqrt{\frac{6637664144}{25}}}{2\times \frac{89}{25}}
Multiply -\frac{356}{25} times -18645124.
x=\frac{0±\frac{8636\sqrt{89}}{5}}{2\times \frac{89}{25}}
Take the square root of \frac{6637664144}{25}.
x=\frac{0±\frac{8636\sqrt{89}}{5}}{\frac{178}{25}}
Multiply 2 times \frac{89}{25}.
x=\frac{21590\sqrt{89}}{89}
Now solve the equation x=\frac{0±\frac{8636\sqrt{89}}{5}}{\frac{178}{25}} when ± is plus.
x=-\frac{21590\sqrt{89}}{89}
Now solve the equation x=\frac{0±\frac{8636\sqrt{89}}{5}}{\frac{178}{25}} when ± is minus.
x=\frac{21590\sqrt{89}}{89} x=-\frac{21590\sqrt{89}}{89}
The equation is now solved.