Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{8}{5}x\right)^{2}+x^{2}=43.18^{2}
Divide 16x by 10 to get \frac{8}{5}x.
\left(\frac{8}{5}\right)^{2}x^{2}+x^{2}=43.18^{2}
Expand \left(\frac{8}{5}x\right)^{2}.
\frac{64}{25}x^{2}+x^{2}=43.18^{2}
Calculate \frac{8}{5} to the power of 2 and get \frac{64}{25}.
\frac{89}{25}x^{2}=43.18^{2}
Combine \frac{64}{25}x^{2} and x^{2} to get \frac{89}{25}x^{2}.
\frac{89}{25}x^{2}=1864.5124
Calculate 43.18 to the power of 2 and get 1864.5124.
x^{2}=1864.5124\times \frac{25}{89}
Multiply both sides by \frac{25}{89}, the reciprocal of \frac{89}{25}.
x^{2}=\frac{4661281}{8900}
Multiply 1864.5124 and \frac{25}{89} to get \frac{4661281}{8900}.
x=\frac{2159\sqrt{89}}{890} x=-\frac{2159\sqrt{89}}{890}
Take the square root of both sides of the equation.
\left(\frac{8}{5}x\right)^{2}+x^{2}=43.18^{2}
Divide 16x by 10 to get \frac{8}{5}x.
\left(\frac{8}{5}\right)^{2}x^{2}+x^{2}=43.18^{2}
Expand \left(\frac{8}{5}x\right)^{2}.
\frac{64}{25}x^{2}+x^{2}=43.18^{2}
Calculate \frac{8}{5} to the power of 2 and get \frac{64}{25}.
\frac{89}{25}x^{2}=43.18^{2}
Combine \frac{64}{25}x^{2} and x^{2} to get \frac{89}{25}x^{2}.
\frac{89}{25}x^{2}=1864.5124
Calculate 43.18 to the power of 2 and get 1864.5124.
\frac{89}{25}x^{2}-1864.5124=0
Subtract 1864.5124 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{89}{25}\left(-1864.5124\right)}}{2\times \frac{89}{25}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{89}{25} for a, 0 for b, and -1864.5124 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{89}{25}\left(-1864.5124\right)}}{2\times \frac{89}{25}}
Square 0.
x=\frac{0±\sqrt{-\frac{356}{25}\left(-1864.5124\right)}}{2\times \frac{89}{25}}
Multiply -4 times \frac{89}{25}.
x=\frac{0±\sqrt{\frac{414854009}{15625}}}{2\times \frac{89}{25}}
Multiply -\frac{356}{25} times -1864.5124 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{2159\sqrt{89}}{125}}{2\times \frac{89}{25}}
Take the square root of \frac{414854009}{15625}.
x=\frac{0±\frac{2159\sqrt{89}}{125}}{\frac{178}{25}}
Multiply 2 times \frac{89}{25}.
x=\frac{2159\sqrt{89}}{890}
Now solve the equation x=\frac{0±\frac{2159\sqrt{89}}{125}}{\frac{178}{25}} when ± is plus.
x=-\frac{2159\sqrt{89}}{890}
Now solve the equation x=\frac{0±\frac{2159\sqrt{89}}{125}}{\frac{178}{25}} when ± is minus.
x=\frac{2159\sqrt{89}}{890} x=-\frac{2159\sqrt{89}}{890}
The equation is now solved.