Evaluate
\frac{13\sqrt{165}+167}{2}\approx 166.994011761
Expand
\frac{13 \sqrt{165} + 167}{2} = 166.99401176132335
Share
Copied to clipboard
\left(\frac{13+\sqrt{165}}{2}\right)^{2}
Since \frac{13}{2} and \frac{\sqrt{165}}{2} have the same denominator, add them by adding their numerators.
\frac{\left(13+\sqrt{165}\right)^{2}}{2^{2}}
To raise \frac{13+\sqrt{165}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{169+26\sqrt{165}+\left(\sqrt{165}\right)^{2}}{2^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(13+\sqrt{165}\right)^{2}.
\frac{169+26\sqrt{165}+165}{2^{2}}
The square of \sqrt{165} is 165.
\frac{334+26\sqrt{165}}{2^{2}}
Add 169 and 165 to get 334.
\frac{334+26\sqrt{165}}{4}
Calculate 2 to the power of 2 and get 4.
\left(\frac{13+\sqrt{165}}{2}\right)^{2}
Since \frac{13}{2} and \frac{\sqrt{165}}{2} have the same denominator, add them by adding their numerators.
\frac{\left(13+\sqrt{165}\right)^{2}}{2^{2}}
To raise \frac{13+\sqrt{165}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{169+26\sqrt{165}+\left(\sqrt{165}\right)^{2}}{2^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(13+\sqrt{165}\right)^{2}.
\frac{169+26\sqrt{165}+165}{2^{2}}
The square of \sqrt{165} is 165.
\frac{334+26\sqrt{165}}{2^{2}}
Add 169 and 165 to get 334.
\frac{334+26\sqrt{165}}{4}
Calculate 2 to the power of 2 and get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}