Solve for x (complex solution)
x\in \mathrm{C}
Solve for x
x\in \mathrm{R}
Graph
Share
Copied to clipboard
\frac{\left(12-3x\right)^{2}}{4^{2}}=\frac{9}{16}\left(4-x\right)^{2}
To raise \frac{12-3x}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(12-3x\right)^{2}}{4^{2}}=\frac{9}{16}\left(16-8x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
\frac{\left(12-3x\right)^{2}}{4^{2}}=9-\frac{9}{2}x+\frac{9}{16}x^{2}
Use the distributive property to multiply \frac{9}{16} by 16-8x+x^{2}.
\frac{144-72x+9x^{2}}{4^{2}}=9-\frac{9}{2}x+\frac{9}{16}x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(12-3x\right)^{2}.
\frac{144-72x+9x^{2}}{16}=9-\frac{9}{2}x+\frac{9}{16}x^{2}
Calculate 4 to the power of 2 and get 16.
9-\frac{9}{2}x+\frac{9}{16}x^{2}=9-\frac{9}{2}x+\frac{9}{16}x^{2}
Divide each term of 144-72x+9x^{2} by 16 to get 9-\frac{9}{2}x+\frac{9}{16}x^{2}.
9-\frac{9}{2}x+\frac{9}{16}x^{2}-9=-\frac{9}{2}x+\frac{9}{16}x^{2}
Subtract 9 from both sides.
-\frac{9}{2}x+\frac{9}{16}x^{2}=-\frac{9}{2}x+\frac{9}{16}x^{2}
Subtract 9 from 9 to get 0.
-\frac{9}{2}x+\frac{9}{16}x^{2}+\frac{9}{2}x=\frac{9}{16}x^{2}
Add \frac{9}{2}x to both sides.
\frac{9}{16}x^{2}=\frac{9}{16}x^{2}
Combine -\frac{9}{2}x and \frac{9}{2}x to get 0.
\frac{9}{16}x^{2}-\frac{9}{16}x^{2}=0
Subtract \frac{9}{16}x^{2} from both sides.
0=0
Combine \frac{9}{16}x^{2} and -\frac{9}{16}x^{2} to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{C}
This is true for any x.
\frac{\left(12-3x\right)^{2}}{4^{2}}=\frac{9}{16}\left(4-x\right)^{2}
To raise \frac{12-3x}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(12-3x\right)^{2}}{4^{2}}=\frac{9}{16}\left(16-8x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
\frac{\left(12-3x\right)^{2}}{4^{2}}=9-\frac{9}{2}x+\frac{9}{16}x^{2}
Use the distributive property to multiply \frac{9}{16} by 16-8x+x^{2}.
\frac{144-72x+9x^{2}}{4^{2}}=9-\frac{9}{2}x+\frac{9}{16}x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(12-3x\right)^{2}.
\frac{144-72x+9x^{2}}{16}=9-\frac{9}{2}x+\frac{9}{16}x^{2}
Calculate 4 to the power of 2 and get 16.
9-\frac{9}{2}x+\frac{9}{16}x^{2}=9-\frac{9}{2}x+\frac{9}{16}x^{2}
Divide each term of 144-72x+9x^{2} by 16 to get 9-\frac{9}{2}x+\frac{9}{16}x^{2}.
9-\frac{9}{2}x+\frac{9}{16}x^{2}-9=-\frac{9}{2}x+\frac{9}{16}x^{2}
Subtract 9 from both sides.
-\frac{9}{2}x+\frac{9}{16}x^{2}=-\frac{9}{2}x+\frac{9}{16}x^{2}
Subtract 9 from 9 to get 0.
-\frac{9}{2}x+\frac{9}{16}x^{2}+\frac{9}{2}x=\frac{9}{16}x^{2}
Add \frac{9}{2}x to both sides.
\frac{9}{16}x^{2}=\frac{9}{16}x^{2}
Combine -\frac{9}{2}x and \frac{9}{2}x to get 0.
\frac{9}{16}x^{2}-\frac{9}{16}x^{2}=0
Subtract \frac{9}{16}x^{2} from both sides.
0=0
Combine \frac{9}{16}x^{2} and -\frac{9}{16}x^{2} to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{R}
This is true for any x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}