Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{100}{9}+\left(\frac{2\sqrt{73}}{3}\right)^{2}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Calculate \frac{10}{3} to the power of 2 and get \frac{100}{9}.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{3^{2}}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
To raise \frac{2\sqrt{73}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
To add or subtract expressions, expand them to make their denominators the same. Expand 3^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Since \frac{100}{9} and \frac{\left(2\sqrt{73}\right)^{2}}{9} have the same denominator, add them by adding their numerators.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{2\sqrt{13}}{3}\right)^{2}+2x^{2}
Factor 52=2^{2}\times 13. Rewrite the square root of the product \sqrt{2^{2}\times 13} as the product of square roots \sqrt{2^{2}}\sqrt{13}. Take the square root of 2^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
To raise \frac{2\sqrt{13}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
Express 2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}} as a single fraction.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+\frac{2x^{2}\times 3^{2}}{3^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x^{2} times \frac{3^{2}}{3^{2}}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Since \frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}} and \frac{2x^{2}\times 3^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\frac{100+2^{2}\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Expand \left(2\sqrt{73}\right)^{2}.
\frac{100+4\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{100+4\times 73}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
The square of \sqrt{73} is 73.
\frac{100+292}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Multiply 4 and 73 to get 292.
\frac{392}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Add 100 and 292 to get 392.
\frac{392}{9}=\frac{2\times 2^{2}\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Expand \left(2\sqrt{13}\right)^{2}.
\frac{392}{9}=\frac{2\times 4\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{392}{9}=\frac{2\times 4\times 13+2x^{2}\times 3^{2}}{3^{2}}
The square of \sqrt{13} is 13.
\frac{392}{9}=\frac{2\times 52+2x^{2}\times 3^{2}}{3^{2}}
Multiply 4 and 13 to get 52.
\frac{392}{9}=\frac{104+2x^{2}\times 3^{2}}{3^{2}}
Multiply 2 and 52 to get 104.
\frac{392}{9}=\frac{104+2x^{2}\times 9}{3^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{392}{9}=\frac{104+18x^{2}}{3^{2}}
Multiply 2 and 9 to get 18.
\frac{392}{9}=\frac{104+18x^{2}}{9}
Calculate 3 to the power of 2 and get 9.
\frac{392}{9}=\frac{104}{9}+2x^{2}
Divide each term of 104+18x^{2} by 9 to get \frac{104}{9}+2x^{2}.
\frac{104}{9}+2x^{2}=\frac{392}{9}
Swap sides so that all variable terms are on the left hand side.
\frac{104}{9}+2x^{2}-\frac{392}{9}=0
Subtract \frac{392}{9} from both sides.
-32+2x^{2}=0
Subtract \frac{392}{9} from \frac{104}{9} to get -32.
-16+x^{2}=0
Divide both sides by 2.
\left(x-4\right)\left(x+4\right)=0
Consider -16+x^{2}. Rewrite -16+x^{2} as x^{2}-4^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
To find equation solutions, solve x-4=0 and x+4=0.
\frac{100}{9}+\left(\frac{2\sqrt{73}}{3}\right)^{2}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Calculate \frac{10}{3} to the power of 2 and get \frac{100}{9}.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{3^{2}}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
To raise \frac{2\sqrt{73}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
To add or subtract expressions, expand them to make their denominators the same. Expand 3^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Since \frac{100}{9} and \frac{\left(2\sqrt{73}\right)^{2}}{9} have the same denominator, add them by adding their numerators.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{2\sqrt{13}}{3}\right)^{2}+2x^{2}
Factor 52=2^{2}\times 13. Rewrite the square root of the product \sqrt{2^{2}\times 13} as the product of square roots \sqrt{2^{2}}\sqrt{13}. Take the square root of 2^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
To raise \frac{2\sqrt{13}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
Express 2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}} as a single fraction.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+\frac{2x^{2}\times 3^{2}}{3^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x^{2} times \frac{3^{2}}{3^{2}}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Since \frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}} and \frac{2x^{2}\times 3^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\frac{100+2^{2}\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Expand \left(2\sqrt{73}\right)^{2}.
\frac{100+4\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{100+4\times 73}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
The square of \sqrt{73} is 73.
\frac{100+292}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Multiply 4 and 73 to get 292.
\frac{392}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Add 100 and 292 to get 392.
\frac{392}{9}=\frac{2\times 2^{2}\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Expand \left(2\sqrt{13}\right)^{2}.
\frac{392}{9}=\frac{2\times 4\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{392}{9}=\frac{2\times 4\times 13+2x^{2}\times 3^{2}}{3^{2}}
The square of \sqrt{13} is 13.
\frac{392}{9}=\frac{2\times 52+2x^{2}\times 3^{2}}{3^{2}}
Multiply 4 and 13 to get 52.
\frac{392}{9}=\frac{104+2x^{2}\times 3^{2}}{3^{2}}
Multiply 2 and 52 to get 104.
\frac{392}{9}=\frac{104+2x^{2}\times 9}{3^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{392}{9}=\frac{104+18x^{2}}{3^{2}}
Multiply 2 and 9 to get 18.
\frac{392}{9}=\frac{104+18x^{2}}{9}
Calculate 3 to the power of 2 and get 9.
\frac{392}{9}=\frac{104}{9}+2x^{2}
Divide each term of 104+18x^{2} by 9 to get \frac{104}{9}+2x^{2}.
\frac{104}{9}+2x^{2}=\frac{392}{9}
Swap sides so that all variable terms are on the left hand side.
2x^{2}=\frac{392}{9}-\frac{104}{9}
Subtract \frac{104}{9} from both sides.
2x^{2}=32
Subtract \frac{104}{9} from \frac{392}{9} to get 32.
x^{2}=\frac{32}{2}
Divide both sides by 2.
x^{2}=16
Divide 32 by 2 to get 16.
x=4 x=-4
Take the square root of both sides of the equation.
\frac{100}{9}+\left(\frac{2\sqrt{73}}{3}\right)^{2}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Calculate \frac{10}{3} to the power of 2 and get \frac{100}{9}.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{3^{2}}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
To raise \frac{2\sqrt{73}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
To add or subtract expressions, expand them to make their denominators the same. Expand 3^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Since \frac{100}{9} and \frac{\left(2\sqrt{73}\right)^{2}}{9} have the same denominator, add them by adding their numerators.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{2\sqrt{13}}{3}\right)^{2}+2x^{2}
Factor 52=2^{2}\times 13. Rewrite the square root of the product \sqrt{2^{2}\times 13} as the product of square roots \sqrt{2^{2}}\sqrt{13}. Take the square root of 2^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
To raise \frac{2\sqrt{13}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
Express 2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}} as a single fraction.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+\frac{2x^{2}\times 3^{2}}{3^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x^{2} times \frac{3^{2}}{3^{2}}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Since \frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}} and \frac{2x^{2}\times 3^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\frac{100+2^{2}\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Expand \left(2\sqrt{73}\right)^{2}.
\frac{100+4\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{100+4\times 73}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
The square of \sqrt{73} is 73.
\frac{100+292}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Multiply 4 and 73 to get 292.
\frac{392}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Add 100 and 292 to get 392.
\frac{392}{9}=\frac{2\times 2^{2}\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Expand \left(2\sqrt{13}\right)^{2}.
\frac{392}{9}=\frac{2\times 4\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{392}{9}=\frac{2\times 4\times 13+2x^{2}\times 3^{2}}{3^{2}}
The square of \sqrt{13} is 13.
\frac{392}{9}=\frac{2\times 52+2x^{2}\times 3^{2}}{3^{2}}
Multiply 4 and 13 to get 52.
\frac{392}{9}=\frac{104+2x^{2}\times 3^{2}}{3^{2}}
Multiply 2 and 52 to get 104.
\frac{392}{9}=\frac{104+2x^{2}\times 9}{3^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{392}{9}=\frac{104+18x^{2}}{3^{2}}
Multiply 2 and 9 to get 18.
\frac{392}{9}=\frac{104+18x^{2}}{9}
Calculate 3 to the power of 2 and get 9.
\frac{392}{9}=\frac{104}{9}+2x^{2}
Divide each term of 104+18x^{2} by 9 to get \frac{104}{9}+2x^{2}.
\frac{104}{9}+2x^{2}=\frac{392}{9}
Swap sides so that all variable terms are on the left hand side.
\frac{104}{9}+2x^{2}-\frac{392}{9}=0
Subtract \frac{392}{9} from both sides.
-32+2x^{2}=0
Subtract \frac{392}{9} from \frac{104}{9} to get -32.
2x^{2}-32=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-32\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-32\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-32\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{256}}{2\times 2}
Multiply -8 times -32.
x=\frac{0±16}{2\times 2}
Take the square root of 256.
x=\frac{0±16}{4}
Multiply 2 times 2.
x=4
Now solve the equation x=\frac{0±16}{4} when ± is plus. Divide 16 by 4.
x=-4
Now solve the equation x=\frac{0±16}{4} when ± is minus. Divide -16 by 4.
x=4 x=-4
The equation is now solved.