Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Rationalize the denominator of \frac{1-\sqrt{3}}{1+\sqrt{3}} by multiplying numerator and denominator by 1-\sqrt{3}.
\left(\frac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Consider \left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1-3}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Square 1. Square \sqrt{3}.
\left(\frac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{-2}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Subtract 3 from 1 to get -2.
\left(\frac{\left(1-\sqrt{3}\right)^{2}}{-2}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Multiply 1-\sqrt{3} and 1-\sqrt{3} to get \left(1-\sqrt{3}\right)^{2}.
\left(\frac{1-2\sqrt{3}+\left(\sqrt{3}\right)^{2}}{-2}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{3}\right)^{2}.
\left(\frac{1-2\sqrt{3}+3}{-2}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
The square of \sqrt{3} is 3.
\left(\frac{4-2\sqrt{3}}{-2}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Add 1 and 3 to get 4.
\left(-2+\sqrt{3}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Divide each term of 4-2\sqrt{3} by -2 to get -2+\sqrt{3}.
4-4\sqrt{3}+\left(\sqrt{3}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2+\sqrt{3}\right)^{2}.
4-4\sqrt{3}+3+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
The square of \sqrt{3} is 3.
7-4\sqrt{3}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Add 4 and 3 to get 7.
7-4\sqrt{3}+\left(\frac{\left(1+\sqrt{3}\right)\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}\right)^{2}
Rationalize the denominator of \frac{1+\sqrt{3}}{1-\sqrt{3}} by multiplying numerator and denominator by 1+\sqrt{3}.
7-4\sqrt{3}+\left(\frac{\left(1+\sqrt{3}\right)\left(1+\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}\right)^{2}
Consider \left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
7-4\sqrt{3}+\left(\frac{\left(1+\sqrt{3}\right)\left(1+\sqrt{3}\right)}{1-3}\right)^{2}
Square 1. Square \sqrt{3}.
7-4\sqrt{3}+\left(\frac{\left(1+\sqrt{3}\right)\left(1+\sqrt{3}\right)}{-2}\right)^{2}
Subtract 3 from 1 to get -2.
7-4\sqrt{3}+\left(\frac{\left(1+\sqrt{3}\right)^{2}}{-2}\right)^{2}
Multiply 1+\sqrt{3} and 1+\sqrt{3} to get \left(1+\sqrt{3}\right)^{2}.
7-4\sqrt{3}+\left(\frac{1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}}{-2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{3}\right)^{2}.
7-4\sqrt{3}+\left(\frac{1+2\sqrt{3}+3}{-2}\right)^{2}
The square of \sqrt{3} is 3.
7-4\sqrt{3}+\left(\frac{4+2\sqrt{3}}{-2}\right)^{2}
Add 1 and 3 to get 4.
7-4\sqrt{3}+\left(-2-\sqrt{3}\right)^{2}
Divide each term of 4+2\sqrt{3} by -2 to get -2-\sqrt{3}.
7-4\sqrt{3}+4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-\sqrt{3}\right)^{2}.
7-4\sqrt{3}+4+4\sqrt{3}+3
The square of \sqrt{3} is 3.
7-4\sqrt{3}+7+4\sqrt{3}
Add 4 and 3 to get 7.
14-4\sqrt{3}+4\sqrt{3}
Add 7 and 7 to get 14.
14
Combine -4\sqrt{3} and 4\sqrt{3} to get 0.