Evaluate
14
Factor
2\times 7
Share
Copied to clipboard
\left(\frac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Rationalize the denominator of \frac{1-\sqrt{3}}{1+\sqrt{3}} by multiplying numerator and denominator by 1-\sqrt{3}.
\left(\frac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Consider \left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1-3}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Square 1. Square \sqrt{3}.
\left(\frac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{-2}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Subtract 3 from 1 to get -2.
\left(\frac{\left(1-\sqrt{3}\right)^{2}}{-2}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Multiply 1-\sqrt{3} and 1-\sqrt{3} to get \left(1-\sqrt{3}\right)^{2}.
\left(\frac{1-2\sqrt{3}+\left(\sqrt{3}\right)^{2}}{-2}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{3}\right)^{2}.
\left(\frac{1-2\sqrt{3}+3}{-2}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
The square of \sqrt{3} is 3.
\left(\frac{4-2\sqrt{3}}{-2}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Add 1 and 3 to get 4.
\left(-2+\sqrt{3}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Divide each term of 4-2\sqrt{3} by -2 to get -2+\sqrt{3}.
4-4\sqrt{3}+\left(\sqrt{3}\right)^{2}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2+\sqrt{3}\right)^{2}.
4-4\sqrt{3}+3+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
The square of \sqrt{3} is 3.
7-4\sqrt{3}+\left(\frac{1+\sqrt{3}}{1-\sqrt{3}}\right)^{2}
Add 4 and 3 to get 7.
7-4\sqrt{3}+\left(\frac{\left(1+\sqrt{3}\right)\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}\right)^{2}
Rationalize the denominator of \frac{1+\sqrt{3}}{1-\sqrt{3}} by multiplying numerator and denominator by 1+\sqrt{3}.
7-4\sqrt{3}+\left(\frac{\left(1+\sqrt{3}\right)\left(1+\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}\right)^{2}
Consider \left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
7-4\sqrt{3}+\left(\frac{\left(1+\sqrt{3}\right)\left(1+\sqrt{3}\right)}{1-3}\right)^{2}
Square 1. Square \sqrt{3}.
7-4\sqrt{3}+\left(\frac{\left(1+\sqrt{3}\right)\left(1+\sqrt{3}\right)}{-2}\right)^{2}
Subtract 3 from 1 to get -2.
7-4\sqrt{3}+\left(\frac{\left(1+\sqrt{3}\right)^{2}}{-2}\right)^{2}
Multiply 1+\sqrt{3} and 1+\sqrt{3} to get \left(1+\sqrt{3}\right)^{2}.
7-4\sqrt{3}+\left(\frac{1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}}{-2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{3}\right)^{2}.
7-4\sqrt{3}+\left(\frac{1+2\sqrt{3}+3}{-2}\right)^{2}
The square of \sqrt{3} is 3.
7-4\sqrt{3}+\left(\frac{4+2\sqrt{3}}{-2}\right)^{2}
Add 1 and 3 to get 4.
7-4\sqrt{3}+\left(-2-\sqrt{3}\right)^{2}
Divide each term of 4+2\sqrt{3} by -2 to get -2-\sqrt{3}.
7-4\sqrt{3}+4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-\sqrt{3}\right)^{2}.
7-4\sqrt{3}+4+4\sqrt{3}+3
The square of \sqrt{3} is 3.
7-4\sqrt{3}+7+4\sqrt{3}
Add 4 and 3 to get 7.
14-4\sqrt{3}+4\sqrt{3}
Add 7 and 7 to get 14.
14
Combine -4\sqrt{3} and 4\sqrt{3} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}