Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{99}
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
\left(\frac{2i}{2}\right)^{99}
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
i^{99}
Divide 2i by 2 to get i.
-i
Calculate i to the power of 99 and get -i.
Re(\left(\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{99})
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\left(\frac{2i}{2}\right)^{99})
Do the multiplications in \frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(i^{99})
Divide 2i by 2 to get i.
Re(-i)
Calculate i to the power of 99 and get -i.
0
The real part of -i is 0.