Solve for x (complex solution)
x=\frac{640+4\sqrt{614}i}{17}\approx 37.647058824+5.830358444i
x=\frac{-4\sqrt{614}i+640}{17}\approx 37.647058824-5.830358444i
Graph
Share
Copied to clipboard
\left(\frac{1}{4}\right)^{2}x^{2}+\left(40-x\right)^{2}=58
Expand \left(\frac{1}{4}x\right)^{2}.
\frac{1}{16}x^{2}+\left(40-x\right)^{2}=58
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{1}{16}x^{2}+1600-80x+x^{2}=58
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(40-x\right)^{2}.
\frac{17}{16}x^{2}+1600-80x=58
Combine \frac{1}{16}x^{2} and x^{2} to get \frac{17}{16}x^{2}.
\frac{17}{16}x^{2}+1600-80x-58=0
Subtract 58 from both sides.
\frac{17}{16}x^{2}+1542-80x=0
Subtract 58 from 1600 to get 1542.
\frac{17}{16}x^{2}-80x+1542=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times \frac{17}{16}\times 1542}}{2\times \frac{17}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{17}{16} for a, -80 for b, and 1542 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times \frac{17}{16}\times 1542}}{2\times \frac{17}{16}}
Square -80.
x=\frac{-\left(-80\right)±\sqrt{6400-\frac{17}{4}\times 1542}}{2\times \frac{17}{16}}
Multiply -4 times \frac{17}{16}.
x=\frac{-\left(-80\right)±\sqrt{6400-\frac{13107}{2}}}{2\times \frac{17}{16}}
Multiply -\frac{17}{4} times 1542.
x=\frac{-\left(-80\right)±\sqrt{-\frac{307}{2}}}{2\times \frac{17}{16}}
Add 6400 to -\frac{13107}{2}.
x=\frac{-\left(-80\right)±\frac{\sqrt{614}i}{2}}{2\times \frac{17}{16}}
Take the square root of -\frac{307}{2}.
x=\frac{80±\frac{\sqrt{614}i}{2}}{2\times \frac{17}{16}}
The opposite of -80 is 80.
x=\frac{80±\frac{\sqrt{614}i}{2}}{\frac{17}{8}}
Multiply 2 times \frac{17}{16}.
x=\frac{\frac{\sqrt{614}i}{2}+80}{\frac{17}{8}}
Now solve the equation x=\frac{80±\frac{\sqrt{614}i}{2}}{\frac{17}{8}} when ± is plus. Add 80 to \frac{i\sqrt{614}}{2}.
x=\frac{640+4\sqrt{614}i}{17}
Divide 80+\frac{i\sqrt{614}}{2} by \frac{17}{8} by multiplying 80+\frac{i\sqrt{614}}{2} by the reciprocal of \frac{17}{8}.
x=\frac{-\frac{\sqrt{614}i}{2}+80}{\frac{17}{8}}
Now solve the equation x=\frac{80±\frac{\sqrt{614}i}{2}}{\frac{17}{8}} when ± is minus. Subtract \frac{i\sqrt{614}}{2} from 80.
x=\frac{-4\sqrt{614}i+640}{17}
Divide 80-\frac{i\sqrt{614}}{2} by \frac{17}{8} by multiplying 80-\frac{i\sqrt{614}}{2} by the reciprocal of \frac{17}{8}.
x=\frac{640+4\sqrt{614}i}{17} x=\frac{-4\sqrt{614}i+640}{17}
The equation is now solved.
\left(\frac{1}{4}\right)^{2}x^{2}+\left(40-x\right)^{2}=58
Expand \left(\frac{1}{4}x\right)^{2}.
\frac{1}{16}x^{2}+\left(40-x\right)^{2}=58
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{1}{16}x^{2}+1600-80x+x^{2}=58
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(40-x\right)^{2}.
\frac{17}{16}x^{2}+1600-80x=58
Combine \frac{1}{16}x^{2} and x^{2} to get \frac{17}{16}x^{2}.
\frac{17}{16}x^{2}-80x=58-1600
Subtract 1600 from both sides.
\frac{17}{16}x^{2}-80x=-1542
Subtract 1600 from 58 to get -1542.
\frac{\frac{17}{16}x^{2}-80x}{\frac{17}{16}}=-\frac{1542}{\frac{17}{16}}
Divide both sides of the equation by \frac{17}{16}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{80}{\frac{17}{16}}\right)x=-\frac{1542}{\frac{17}{16}}
Dividing by \frac{17}{16} undoes the multiplication by \frac{17}{16}.
x^{2}-\frac{1280}{17}x=-\frac{1542}{\frac{17}{16}}
Divide -80 by \frac{17}{16} by multiplying -80 by the reciprocal of \frac{17}{16}.
x^{2}-\frac{1280}{17}x=-\frac{24672}{17}
Divide -1542 by \frac{17}{16} by multiplying -1542 by the reciprocal of \frac{17}{16}.
x^{2}-\frac{1280}{17}x+\left(-\frac{640}{17}\right)^{2}=-\frac{24672}{17}+\left(-\frac{640}{17}\right)^{2}
Divide -\frac{1280}{17}, the coefficient of the x term, by 2 to get -\frac{640}{17}. Then add the square of -\frac{640}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1280}{17}x+\frac{409600}{289}=-\frac{24672}{17}+\frac{409600}{289}
Square -\frac{640}{17} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1280}{17}x+\frac{409600}{289}=-\frac{9824}{289}
Add -\frac{24672}{17} to \frac{409600}{289} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{640}{17}\right)^{2}=-\frac{9824}{289}
Factor x^{2}-\frac{1280}{17}x+\frac{409600}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{640}{17}\right)^{2}}=\sqrt{-\frac{9824}{289}}
Take the square root of both sides of the equation.
x-\frac{640}{17}=\frac{4\sqrt{614}i}{17} x-\frac{640}{17}=-\frac{4\sqrt{614}i}{17}
Simplify.
x=\frac{640+4\sqrt{614}i}{17} x=\frac{-4\sqrt{614}i+640}{17}
Add \frac{640}{17} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}