Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(x^{2}\left(x^{2}+8y^{2}\right)\right)^{2}-\left(16y^{4}-\left(2x^{2}+\left(2y-x\right)\left(2y+x\right)\right)^{2}\right)^{2}}{256}
Factor out \frac{1}{256}.
0
Consider \left(x^{2}\left(x^{2}+8y^{2}\right)\right)^{2}-\left(16y^{4}-\left(2x^{2}+\left(2y-x\right)\left(2y+x\right)\right)^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
2\left(x^{4}+8x^{2}y^{2}\right)
Consider 2x^{4}+16x^{2}y^{2}. Factor out 2.
x^{2}\left(x^{2}+8y^{2}\right)
Consider x^{4}+8x^{2}y^{2}. Factor out x^{2}.
0
Rewrite the complete factored expression.