Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\sqrt{3}+2}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}\right)^{2}
Rationalize the denominator of \frac{1}{\sqrt{3}-2} by multiplying numerator and denominator by \sqrt{3}+2.
\left(\frac{\sqrt{3}+2}{\left(\sqrt{3}\right)^{2}-2^{2}}\right)^{2}
Consider \left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{3}+2}{3-4}\right)^{2}
Square \sqrt{3}. Square 2.
\left(\frac{\sqrt{3}+2}{-1}\right)^{2}
Subtract 4 from 3 to get -1.
\left(-\sqrt{3}-2\right)^{2}
Anything divided by -1 gives its opposite. To find the opposite of \sqrt{3}+2, find the opposite of each term.
\left(\sqrt{3}\right)^{2}+4\sqrt{3}+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-\sqrt{3}-2\right)^{2}.
3+4\sqrt{3}+4
The square of \sqrt{3} is 3.
7+4\sqrt{3}
Add 3 and 4 to get 7.