Evaluate
4\sqrt{3}+7\approx 13.92820323
Share
Copied to clipboard
\left(\frac{\sqrt{3}+2}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}\right)^{2}
Rationalize the denominator of \frac{1}{\sqrt{3}-2} by multiplying numerator and denominator by \sqrt{3}+2.
\left(\frac{\sqrt{3}+2}{\left(\sqrt{3}\right)^{2}-2^{2}}\right)^{2}
Consider \left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{3}+2}{3-4}\right)^{2}
Square \sqrt{3}. Square 2.
\left(\frac{\sqrt{3}+2}{-1}\right)^{2}
Subtract 4 from 3 to get -1.
\left(-\sqrt{3}-2\right)^{2}
Anything divided by -1 gives its opposite. To find the opposite of \sqrt{3}+2, find the opposite of each term.
\left(\sqrt{3}\right)^{2}+4\sqrt{3}+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-\sqrt{3}-2\right)^{2}.
3+4\sqrt{3}+4
The square of \sqrt{3} is 3.
7+4\sqrt{3}
Add 3 and 4 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}