Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{-9+9i\sqrt{3}}{2}\right)^{2}
Multiply 9 and i to get 9i.
\frac{\left(-9+9i\sqrt{3}\right)^{2}}{2^{2}}
To raise \frac{-9+9i\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{81-162i\sqrt{3}-81\left(\sqrt{3}\right)^{2}}{2^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-9+9i\sqrt{3}\right)^{2}.
\frac{81-162i\sqrt{3}-81\times 3}{2^{2}}
The square of \sqrt{3} is 3.
\frac{81-162i\sqrt{3}-243}{2^{2}}
Multiply -81 and 3 to get -243.
\frac{-162-162i\sqrt{3}}{2^{2}}
Subtract 243 from 81 to get -162.
\frac{-162-162i\sqrt{3}}{4}
Calculate 2 to the power of 2 and get 4.
\left(\frac{-9+9i\sqrt{3}}{2}\right)^{2}
Multiply 9 and i to get 9i.
\frac{\left(-9+9i\sqrt{3}\right)^{2}}{2^{2}}
To raise \frac{-9+9i\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{81-162i\sqrt{3}-81\left(\sqrt{3}\right)^{2}}{2^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-9+9i\sqrt{3}\right)^{2}.
\frac{81-162i\sqrt{3}-81\times 3}{2^{2}}
The square of \sqrt{3} is 3.
\frac{81-162i\sqrt{3}-243}{2^{2}}
Multiply -81 and 3 to get -243.
\frac{-162-162i\sqrt{3}}{2^{2}}
Subtract 243 from 81 to get -162.
\frac{-162-162i\sqrt{3}}{4}
Calculate 2 to the power of 2 and get 4.