Evaluate
\frac{1600\left(25+16y^{2}-x^{2}\right)}{\left(16y^{2}+25\right)^{2}}
Expand
\frac{1600\left(25+16y^{2}-x^{2}\right)}{\left(16y^{2}+25\right)^{2}}
Share
Copied to clipboard
\frac{\left(-32xy\right)^{2}}{\left(25+16y^{2}\right)^{2}}-\frac{4\left(16x^{2}-400\right)}{25+16y^{2}}
To raise \frac{-32xy}{25+16y^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-32xy\right)^{2}}{\left(25+16y^{2}\right)^{2}}-\frac{64x^{2}-1600}{25+16y^{2}}
Use the distributive property to multiply 4 by 16x^{2}-400.
\frac{\left(-32xy\right)^{2}}{\left(16y^{2}+25\right)^{2}}-\frac{\left(64x^{2}-1600\right)\left(16y^{2}+25\right)}{\left(16y^{2}+25\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(25+16y^{2}\right)^{2} and 25+16y^{2} is \left(16y^{2}+25\right)^{2}. Multiply \frac{64x^{2}-1600}{25+16y^{2}} times \frac{16y^{2}+25}{16y^{2}+25}.
\frac{\left(-32xy\right)^{2}-\left(64x^{2}-1600\right)\left(16y^{2}+25\right)}{\left(16y^{2}+25\right)^{2}}
Since \frac{\left(-32xy\right)^{2}}{\left(16y^{2}+25\right)^{2}} and \frac{\left(64x^{2}-1600\right)\left(16y^{2}+25\right)}{\left(16y^{2}+25\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(-32xy\right)^{2}-1024x^{2}y^{2}-1600x^{2}+25600y^{2}+40000}{\left(16y^{2}+25\right)^{2}}
Do the multiplications in \left(-32xy\right)^{2}-\left(64x^{2}-1600\right)\left(16y^{2}+25\right).
\frac{25600y^{2}-1600x^{2}+40000}{\left(16y^{2}+25\right)^{2}}
Combine like terms in \left(-32xy\right)^{2}-1024x^{2}y^{2}-1600x^{2}+25600y^{2}+40000.
\frac{25600y^{2}-1600x^{2}+40000}{256y^{4}+800y^{2}+625}
Expand \left(16y^{2}+25\right)^{2}.
\frac{\left(-32xy\right)^{2}}{\left(25+16y^{2}\right)^{2}}-\frac{4\left(16x^{2}-400\right)}{25+16y^{2}}
To raise \frac{-32xy}{25+16y^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-32xy\right)^{2}}{\left(25+16y^{2}\right)^{2}}-\frac{64x^{2}-1600}{25+16y^{2}}
Use the distributive property to multiply 4 by 16x^{2}-400.
\frac{\left(-32xy\right)^{2}}{\left(16y^{2}+25\right)^{2}}-\frac{\left(64x^{2}-1600\right)\left(16y^{2}+25\right)}{\left(16y^{2}+25\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(25+16y^{2}\right)^{2} and 25+16y^{2} is \left(16y^{2}+25\right)^{2}. Multiply \frac{64x^{2}-1600}{25+16y^{2}} times \frac{16y^{2}+25}{16y^{2}+25}.
\frac{\left(-32xy\right)^{2}-\left(64x^{2}-1600\right)\left(16y^{2}+25\right)}{\left(16y^{2}+25\right)^{2}}
Since \frac{\left(-32xy\right)^{2}}{\left(16y^{2}+25\right)^{2}} and \frac{\left(64x^{2}-1600\right)\left(16y^{2}+25\right)}{\left(16y^{2}+25\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(-32xy\right)^{2}-1024x^{2}y^{2}-1600x^{2}+25600y^{2}+40000}{\left(16y^{2}+25\right)^{2}}
Do the multiplications in \left(-32xy\right)^{2}-\left(64x^{2}-1600\right)\left(16y^{2}+25\right).
\frac{25600y^{2}-1600x^{2}+40000}{\left(16y^{2}+25\right)^{2}}
Combine like terms in \left(-32xy\right)^{2}-1024x^{2}y^{2}-1600x^{2}+25600y^{2}+40000.
\frac{25600y^{2}-1600x^{2}+40000}{256y^{4}+800y^{2}+625}
Expand \left(16y^{2}+25\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}