Verify
false
Share
Copied to clipboard
\left(\frac{\left(\left(\left(1^{1}\right)^{1}\times \frac{1}{1}\right)^{3}\times \frac{1}{1}\right)^{3}}{1}\right)^{2}=\left(\frac{\left(\frac{\left(\frac{\left(\left(\frac{1\times 1+1}{1}\right)^{3}\times \frac{1}{1}\times \frac{1}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 1 and 1 to get 1.
\left(\frac{\left(\left(1^{1}\times \frac{1}{1}\right)^{3}\times \frac{1}{1}\right)^{3}}{1}\right)^{2}=\left(\frac{\left(\frac{\left(\frac{\left(\left(\frac{1\times 1+1}{1}\right)^{3}\times \frac{1}{1}\times \frac{1}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 1 and 1 to get 1.
\left(\frac{\left(\left(1^{1}\times 1\right)^{3}\times \frac{1}{1}\right)^{3}}{1}\right)^{2}=\left(\frac{\left(\frac{\left(\frac{\left(\left(\frac{1\times 1+1}{1}\right)^{3}\times \frac{1}{1}\times \frac{1}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
Divide 1 by 1 to get 1.
\left(\frac{\left(\left(1^{2}\right)^{3}\times \frac{1}{1}\right)^{3}}{1}\right)^{2}=\left(\frac{\left(\frac{\left(\frac{\left(\left(\frac{1\times 1+1}{1}\right)^{3}\times \frac{1}{1}\times \frac{1}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
To multiply powers of the same base, add their exponents. Add 1 and 1 to get 2.
\left(\frac{\left(1^{6}\times \frac{1}{1}\right)^{3}}{1}\right)^{2}=\left(\frac{\left(\frac{\left(\frac{\left(\left(\frac{1\times 1+1}{1}\right)^{3}\times \frac{1}{1}\times \frac{1}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\left(\frac{\left(1^{6}\times 1\right)^{3}}{1}\right)^{2}=\left(\frac{\left(\frac{\left(\frac{\left(\left(\frac{1\times 1+1}{1}\right)^{3}\times \frac{1}{1}\times \frac{1}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
Divide 1 by 1 to get 1.
\left(\frac{\left(1^{7}\right)^{3}}{1}\right)^{2}=\left(\frac{\left(\frac{\left(\frac{\left(\left(\frac{1\times 1+1}{1}\right)^{3}\times \frac{1}{1}\times \frac{1}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
To multiply powers of the same base, add their exponents. Add 6 and 1 to get 7.
\left(\frac{1^{21}}{1}\right)^{2}=\left(\frac{\left(\frac{\left(\frac{\left(\left(\frac{1\times 1+1}{1}\right)^{3}\times \frac{1}{1}\times \frac{1}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 7 and 3 to get 21.
\left(1^{20}\right)^{2}=\left(\frac{\left(\frac{\left(\frac{\left(\left(\frac{1\times 1+1}{1}\right)^{3}\times \frac{1}{1}\times \frac{1}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 1 from 21 to get 20.
1^{40}=\left(\frac{\left(\frac{\left(\frac{\left(\left(\frac{1\times 1+1}{1}\right)^{3}\times \frac{1}{1}\times \frac{1}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 20 and 2 to get 40.
1^{40}=\left(\frac{\left(\frac{\left(\frac{\left(\left(\frac{1\times 1+1}{1}\right)^{3}\times 1\times \frac{1}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
Divide 1 by 1 to get 1.
1^{40}=\left(\frac{\left(\frac{\left(\frac{\left(\left(\frac{1\times 1+1}{1}\right)^{3}\times 1\times 1\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
Divide 1 by 1 to get 1.
1=\left(\frac{\left(\frac{\left(\frac{\left(\left(\frac{1\times 1+1}{1}\right)^{3}\times 1\times 1\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
Calculate 1 to the power of 40 and get 1.
1=\left(\frac{\left(\frac{\left(\frac{\left(\left(\frac{1+1}{1}\right)^{3}\times 1\times 1\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
Multiply 1 and 1 to get 1.
1=\left(\frac{\left(\frac{\left(\frac{\left(\left(\frac{2}{1}\right)^{3}\times 1\times 1\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
Add 1 and 1 to get 2.
1=\left(\frac{\left(\frac{\left(\frac{\left(2^{3}\times 1\times 1\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
Anything divided by one gives itself.
1=\left(\frac{\left(\frac{\left(\frac{\left(8\times 1\times 1\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
Calculate 2 to the power of 3 and get 8.
1=\left(\frac{\left(\frac{\left(\frac{\left(8\times 1\right)^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
Multiply 8 and 1 to get 8.
1=\left(\frac{\left(\frac{\left(\frac{8^{2}}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
Multiply 8 and 1 to get 8.
1=\left(\frac{\left(\frac{\left(\frac{64}{1}\right)^{2}}{1}\right)^{2}}{1}\right)^{2}
Calculate 8 to the power of 2 and get 64.
1=\left(\frac{\left(\frac{64^{2}}{1}\right)^{2}}{1}\right)^{2}
Anything divided by one gives itself.
1=\left(\frac{\left(\frac{4096}{1}\right)^{2}}{1}\right)^{2}
Calculate 64 to the power of 2 and get 4096.
1=\left(\frac{4096^{2}}{1}\right)^{2}
Anything divided by one gives itself.
1=\left(\frac{16777216}{1}\right)^{2}
Calculate 4096 to the power of 2 and get 16777216.
1=16777216^{2}
Anything divided by one gives itself.
1=281474976710656
Calculate 16777216 to the power of 2 and get 281474976710656.
\text{false}
Compare 1 and 281474976710656.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}