Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{6}{2}-x\right)^{2}+\left(\frac{\sqrt{36}}{2}\right)^{2}=4x^{2}
Calculate the square root of 36 and get 6.
\left(3-x\right)^{2}+\left(\frac{\sqrt{36}}{2}\right)^{2}=4x^{2}
Divide 6 by 2 to get 3.
9-6x+x^{2}+\left(\frac{\sqrt{36}}{2}\right)^{2}=4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
9-6x+x^{2}+\left(\frac{6}{2}\right)^{2}=4x^{2}
Calculate the square root of 36 and get 6.
9-6x+x^{2}+3^{2}=4x^{2}
Divide 6 by 2 to get 3.
9-6x+x^{2}+9=4x^{2}
Calculate 3 to the power of 2 and get 9.
18-6x+x^{2}=4x^{2}
Add 9 and 9 to get 18.
18-6x+x^{2}-4x^{2}=0
Subtract 4x^{2} from both sides.
18-6x-3x^{2}=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-6x+18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)\times 18}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -6 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)\times 18}}{2\left(-3\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+12\times 18}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-6\right)±\sqrt{36+216}}{2\left(-3\right)}
Multiply 12 times 18.
x=\frac{-\left(-6\right)±\sqrt{252}}{2\left(-3\right)}
Add 36 to 216.
x=\frac{-\left(-6\right)±6\sqrt{7}}{2\left(-3\right)}
Take the square root of 252.
x=\frac{6±6\sqrt{7}}{2\left(-3\right)}
The opposite of -6 is 6.
x=\frac{6±6\sqrt{7}}{-6}
Multiply 2 times -3.
x=\frac{6\sqrt{7}+6}{-6}
Now solve the equation x=\frac{6±6\sqrt{7}}{-6} when ± is plus. Add 6 to 6\sqrt{7}.
x=-\left(\sqrt{7}+1\right)
Divide 6+6\sqrt{7} by -6.
x=\frac{6-6\sqrt{7}}{-6}
Now solve the equation x=\frac{6±6\sqrt{7}}{-6} when ± is minus. Subtract 6\sqrt{7} from 6.
x=\sqrt{7}-1
Divide 6-6\sqrt{7} by -6.
x=-\left(\sqrt{7}+1\right) x=\sqrt{7}-1
The equation is now solved.
\left(\frac{6}{2}-x\right)^{2}+\left(\frac{\sqrt{36}}{2}\right)^{2}=4x^{2}
Calculate the square root of 36 and get 6.
\left(3-x\right)^{2}+\left(\frac{\sqrt{36}}{2}\right)^{2}=4x^{2}
Divide 6 by 2 to get 3.
9-6x+x^{2}+\left(\frac{\sqrt{36}}{2}\right)^{2}=4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
9-6x+x^{2}+\left(\frac{6}{2}\right)^{2}=4x^{2}
Calculate the square root of 36 and get 6.
9-6x+x^{2}+3^{2}=4x^{2}
Divide 6 by 2 to get 3.
9-6x+x^{2}+9=4x^{2}
Calculate 3 to the power of 2 and get 9.
18-6x+x^{2}=4x^{2}
Add 9 and 9 to get 18.
18-6x+x^{2}-4x^{2}=0
Subtract 4x^{2} from both sides.
18-6x-3x^{2}=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-6x-3x^{2}=-18
Subtract 18 from both sides. Anything subtracted from zero gives its negation.
-3x^{2}-6x=-18
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-6x}{-3}=-\frac{18}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{6}{-3}\right)x=-\frac{18}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+2x=-\frac{18}{-3}
Divide -6 by -3.
x^{2}+2x=6
Divide -18 by -3.
x^{2}+2x+1^{2}=6+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=6+1
Square 1.
x^{2}+2x+1=7
Add 6 to 1.
\left(x+1\right)^{2}=7
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x+1=\sqrt{7} x+1=-\sqrt{7}
Simplify.
x=\sqrt{7}-1 x=-\sqrt{7}-1
Subtract 1 from both sides of the equation.