Evaluate
\frac{\sqrt{33}+3}{2}\approx 4.372281323
Factor
\frac{\sqrt{33} + 3}{2} = 4.372281323269014
Share
Copied to clipboard
\frac{\left(\sqrt{33}+3\right)^{2}}{2^{2}}-\sqrt{33}-3-6
To raise \frac{\sqrt{33}+3}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{33}+3\right)^{2}}{2^{2}}-\sqrt{33}-9
Subtract 6 from -3 to get -9.
\frac{\left(\sqrt{33}+3\right)^{2}}{2^{2}}+\frac{\left(-\sqrt{33}-9\right)\times 2^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -\sqrt{33}-9 times \frac{2^{2}}{2^{2}}.
\frac{\left(\sqrt{33}+3\right)^{2}+\left(-\sqrt{33}-9\right)\times 2^{2}}{2^{2}}
Since \frac{\left(\sqrt{33}+3\right)^{2}}{2^{2}} and \frac{\left(-\sqrt{33}-9\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{33}\right)^{2}+6\sqrt{33}+9-4\sqrt{33}-36}{2^{2}}
Do the multiplications in \left(\sqrt{33}+3\right)^{2}+\left(-\sqrt{33}-9\right)\times 2^{2}.
\frac{6+2\sqrt{33}}{2^{2}}
Do the calculations in \left(\sqrt{33}\right)^{2}+6\sqrt{33}+9-4\sqrt{33}-36.
\frac{6+2\sqrt{33}}{4}
Expand 2^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}