Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)^{2}
Rationalize the denominator of \frac{\sqrt{3}+1}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\right)^{2}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}\right)^{2}
Square \sqrt{3}. Square 1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}\right)^{2}
Subtract 1 from 3 to get 2.
\left(\frac{\left(\sqrt{3}+1\right)^{2}}{2}\right)^{2}
Multiply \sqrt{3}+1 and \sqrt{3}+1 to get \left(\sqrt{3}+1\right)^{2}.
\left(\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
\left(\frac{3+2\sqrt{3}+1}{2}\right)^{2}
The square of \sqrt{3} is 3.
\left(\frac{4+2\sqrt{3}}{2}\right)^{2}
Add 3 and 1 to get 4.
\left(2+\sqrt{3}\right)^{2}
Divide each term of 4+2\sqrt{3} by 2 to get 2+\sqrt{3}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3
The square of \sqrt{3} is 3.
7+4\sqrt{3}
Add 4 and 3 to get 7.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)^{2}
Rationalize the denominator of \frac{\sqrt{3}+1}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\right)^{2}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}\right)^{2}
Square \sqrt{3}. Square 1.
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}\right)^{2}
Subtract 1 from 3 to get 2.
\left(\frac{\left(\sqrt{3}+1\right)^{2}}{2}\right)^{2}
Multiply \sqrt{3}+1 and \sqrt{3}+1 to get \left(\sqrt{3}+1\right)^{2}.
\left(\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
\left(\frac{3+2\sqrt{3}+1}{2}\right)^{2}
The square of \sqrt{3} is 3.
\left(\frac{4+2\sqrt{3}}{2}\right)^{2}
Add 3 and 1 to get 4.
\left(2+\sqrt{3}\right)^{2}
Divide each term of 4+2\sqrt{3} by 2 to get 2+\sqrt{3}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3
The square of \sqrt{3} is 3.
7+4\sqrt{3}
Add 4 and 3 to get 7.