Verify
false
Share
Copied to clipboard
\left(\frac{8\sqrt{2}}{3\times 2}\right)^{2}+\left(\frac{\frac{8\sqrt{3}}{3}}{2}\right)^{2}=16
Express \frac{\frac{8\sqrt{2}}{3}}{2} as a single fraction.
\left(\frac{4\sqrt{2}}{3}\right)^{2}+\left(\frac{\frac{8\sqrt{3}}{3}}{2}\right)^{2}=16
Cancel out 2 in both numerator and denominator.
\frac{\left(4\sqrt{2}\right)^{2}}{3^{2}}+\left(\frac{\frac{8\sqrt{3}}{3}}{2}\right)^{2}=16
To raise \frac{4\sqrt{2}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(4\sqrt{2}\right)^{2}}{3^{2}}+\left(\frac{8\sqrt{3}}{3\times 2}\right)^{2}=16
Express \frac{\frac{8\sqrt{3}}{3}}{2} as a single fraction.
\frac{\left(4\sqrt{2}\right)^{2}}{3^{2}}+\left(\frac{4\sqrt{3}}{3}\right)^{2}=16
Cancel out 2 in both numerator and denominator.
\frac{\left(4\sqrt{2}\right)^{2}}{3^{2}}+\frac{\left(4\sqrt{3}\right)^{2}}{3^{2}}=16
To raise \frac{4\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(4\sqrt{2}\right)^{2}+\left(4\sqrt{3}\right)^{2}}{3^{2}}=16
Since \frac{\left(4\sqrt{2}\right)^{2}}{3^{2}} and \frac{\left(4\sqrt{3}\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\frac{4^{2}\left(\sqrt{2}\right)^{2}+\left(4\sqrt{3}\right)^{2}}{3^{2}}=16
Expand \left(4\sqrt{2}\right)^{2}.
\frac{16\left(\sqrt{2}\right)^{2}+\left(4\sqrt{3}\right)^{2}}{3^{2}}=16
Calculate 4 to the power of 2 and get 16.
\frac{16\times 2+\left(4\sqrt{3}\right)^{2}}{3^{2}}=16
The square of \sqrt{2} is 2.
\frac{32+\left(4\sqrt{3}\right)^{2}}{3^{2}}=16
Multiply 16 and 2 to get 32.
\frac{32+4^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}=16
Expand \left(4\sqrt{3}\right)^{2}.
\frac{32+16\left(\sqrt{3}\right)^{2}}{3^{2}}=16
Calculate 4 to the power of 2 and get 16.
\frac{32+16\times 3}{3^{2}}=16
The square of \sqrt{3} is 3.
\frac{32+48}{3^{2}}=16
Multiply 16 and 3 to get 48.
\frac{80}{3^{2}}=16
Add 32 and 48 to get 80.
\frac{80}{9}=16
Calculate 3 to the power of 2 and get 9.
\frac{80}{9}=\frac{144}{9}
Convert 16 to fraction \frac{144}{9}.
\text{false}
Compare \frac{80}{9} and \frac{144}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}