Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\frac{1}{2}}{2-3}-1\right)^{2}-\sqrt{\frac{1}{8}}\sqrt{\frac{1}{2}}+\frac{1-\frac{3}{5}}{2}-\frac{5}{4}
Subtract 1 from \frac{3}{2} to get \frac{1}{2}.
\left(\frac{\frac{1}{2}}{-1}-1\right)^{2}-\sqrt{\frac{1}{8}}\sqrt{\frac{1}{2}}+\frac{1-\frac{3}{5}}{2}-\frac{5}{4}
Subtract 3 from 2 to get -1.
\left(\frac{1}{2\left(-1\right)}-1\right)^{2}-\sqrt{\frac{1}{8}}\sqrt{\frac{1}{2}}+\frac{1-\frac{3}{5}}{2}-\frac{5}{4}
Express \frac{\frac{1}{2}}{-1} as a single fraction.
\left(\frac{1}{-2}-1\right)^{2}-\sqrt{\frac{1}{8}}\sqrt{\frac{1}{2}}+\frac{1-\frac{3}{5}}{2}-\frac{5}{4}
Multiply 2 and -1 to get -2.
\left(-\frac{1}{2}-1\right)^{2}-\sqrt{\frac{1}{8}}\sqrt{\frac{1}{2}}+\frac{1-\frac{3}{5}}{2}-\frac{5}{4}
Fraction \frac{1}{-2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\left(-\frac{3}{2}\right)^{2}-\sqrt{\frac{1}{8}}\sqrt{\frac{1}{2}}+\frac{1-\frac{3}{5}}{2}-\frac{5}{4}
Subtract 1 from -\frac{1}{2} to get -\frac{3}{2}.
\frac{9}{4}-\sqrt{\frac{1}{8}}\sqrt{\frac{1}{2}}+\frac{1-\frac{3}{5}}{2}-\frac{5}{4}
Calculate -\frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{9}{4}-\sqrt{\frac{1}{16}}+\frac{1-\frac{3}{5}}{2}-\frac{5}{4}
To multiply \sqrt{\frac{1}{8}} and \sqrt{\frac{1}{2}}, multiply the numbers under the square root.
\frac{9}{4}-\frac{1}{4}+\frac{1-\frac{3}{5}}{2}-\frac{5}{4}
Rewrite the square root of the division \frac{1}{16} as the division of square roots \frac{\sqrt{1}}{\sqrt{16}}. Take the square root of both numerator and denominator.
2+\frac{1-\frac{3}{5}}{2}-\frac{5}{4}
Subtract \frac{1}{4} from \frac{9}{4} to get 2.
2+\frac{\frac{2}{5}}{2}-\frac{5}{4}
Subtract \frac{3}{5} from 1 to get \frac{2}{5}.
2+\frac{2}{5\times 2}-\frac{5}{4}
Express \frac{\frac{2}{5}}{2} as a single fraction.
2+\frac{1}{5}-\frac{5}{4}
Cancel out 2 in both numerator and denominator.
\frac{11}{5}-\frac{5}{4}
Add 2 and \frac{1}{5} to get \frac{11}{5}.
\frac{19}{20}
Subtract \frac{5}{4} from \frac{11}{5} to get \frac{19}{20}.