Skip to main content
Evaluate
Tick mark Image

Share

\left(\frac{\sqrt{2}}{2}\right)^{2}-\frac{1}{2}\tan(45)+\tan(30)
Get the value of \cos(45) from trigonometric values table.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{1}{2}\tan(45)+\tan(30)
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{1}{2}\times 1+\tan(30)
Get the value of \tan(45) from trigonometric values table.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{1}{2}+\tan(30)
Multiply \frac{1}{2} and 1 to get \frac{1}{2}.
\frac{\left(\sqrt{2}\right)^{2}}{4}-\frac{2}{4}+\tan(30)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2^{2} and 2 is 4. Multiply \frac{1}{2} times \frac{2}{2}.
\frac{\left(\sqrt{2}\right)^{2}-2}{4}+\tan(30)
Since \frac{\left(\sqrt{2}\right)^{2}}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{2}\right)^{2}-2}{4}+\frac{\sqrt{3}}{3}
Get the value of \tan(30) from trigonometric values table.
\frac{3\left(\left(\sqrt{2}\right)^{2}-2\right)}{12}+\frac{4\sqrt{3}}{12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 3 is 12. Multiply \frac{\left(\sqrt{2}\right)^{2}-2}{4} times \frac{3}{3}. Multiply \frac{\sqrt{3}}{3} times \frac{4}{4}.
\frac{3\left(\left(\sqrt{2}\right)^{2}-2\right)+4\sqrt{3}}{12}
Since \frac{3\left(\left(\sqrt{2}\right)^{2}-2\right)}{12} and \frac{4\sqrt{3}}{12} have the same denominator, add them by adding their numerators.
\frac{2-2}{4}+\frac{\sqrt{3}}{3}
The square of \sqrt{2} is 2.
\frac{0}{4}+\frac{\sqrt{3}}{3}
Subtract 2 from 2 to get 0.
0+\frac{\sqrt{3}}{3}
Zero divided by any non-zero number gives zero.
\frac{\sqrt{3}}{3}
Anything plus zero gives itself.