Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

4\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-\sqrt{2}\right)^{2}.
4\times 3-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
12-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Multiply 4 and 3 to get 12.
12-4\sqrt{6}+\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
12-4\sqrt{6}+2
The square of \sqrt{2} is 2.
14-4\sqrt{6}
Add 12 and 2 to get 14.
4\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-\sqrt{2}\right)^{2}.
4\times 3-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
12-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Multiply 4 and 3 to get 12.
12-4\sqrt{6}+\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
12-4\sqrt{6}+2
The square of \sqrt{2} is 2.
14-4\sqrt{6}
Add 12 and 2 to get 14.