Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{9+4\sqrt{5}}{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}+\frac{1}{9+4\sqrt{5}}\right)^{2}
Rationalize the denominator of \frac{1}{9-4\sqrt{5}} by multiplying numerator and denominator by 9+4\sqrt{5}.
\left(\frac{9+4\sqrt{5}}{9^{2}-\left(-4\sqrt{5}\right)^{2}}+\frac{1}{9+4\sqrt{5}}\right)^{2}
Consider \left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{9+4\sqrt{5}}{81-\left(-4\sqrt{5}\right)^{2}}+\frac{1}{9+4\sqrt{5}}\right)^{2}
Calculate 9 to the power of 2 and get 81.
\left(\frac{9+4\sqrt{5}}{81-\left(-4\right)^{2}\left(\sqrt{5}\right)^{2}}+\frac{1}{9+4\sqrt{5}}\right)^{2}
Expand \left(-4\sqrt{5}\right)^{2}.
\left(\frac{9+4\sqrt{5}}{81-16\left(\sqrt{5}\right)^{2}}+\frac{1}{9+4\sqrt{5}}\right)^{2}
Calculate -4 to the power of 2 and get 16.
\left(\frac{9+4\sqrt{5}}{81-16\times 5}+\frac{1}{9+4\sqrt{5}}\right)^{2}
The square of \sqrt{5} is 5.
\left(\frac{9+4\sqrt{5}}{81-80}+\frac{1}{9+4\sqrt{5}}\right)^{2}
Multiply 16 and 5 to get 80.
\left(\frac{9+4\sqrt{5}}{1}+\frac{1}{9+4\sqrt{5}}\right)^{2}
Subtract 80 from 81 to get 1.
\left(9+4\sqrt{5}+\frac{1}{9+4\sqrt{5}}\right)^{2}
Anything divided by one gives itself.
\left(9+4\sqrt{5}+\frac{9-4\sqrt{5}}{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\right)^{2}
Rationalize the denominator of \frac{1}{9+4\sqrt{5}} by multiplying numerator and denominator by 9-4\sqrt{5}.
\left(9+4\sqrt{5}+\frac{9-4\sqrt{5}}{9^{2}-\left(4\sqrt{5}\right)^{2}}\right)^{2}
Consider \left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(9+4\sqrt{5}+\frac{9-4\sqrt{5}}{81-\left(4\sqrt{5}\right)^{2}}\right)^{2}
Calculate 9 to the power of 2 and get 81.
\left(9+4\sqrt{5}+\frac{9-4\sqrt{5}}{81-4^{2}\left(\sqrt{5}\right)^{2}}\right)^{2}
Expand \left(4\sqrt{5}\right)^{2}.
\left(9+4\sqrt{5}+\frac{9-4\sqrt{5}}{81-16\left(\sqrt{5}\right)^{2}}\right)^{2}
Calculate 4 to the power of 2 and get 16.
\left(9+4\sqrt{5}+\frac{9-4\sqrt{5}}{81-16\times 5}\right)^{2}
The square of \sqrt{5} is 5.
\left(9+4\sqrt{5}+\frac{9-4\sqrt{5}}{81-80}\right)^{2}
Multiply 16 and 5 to get 80.
\left(9+4\sqrt{5}+\frac{9-4\sqrt{5}}{1}\right)^{2}
Subtract 80 from 81 to get 1.
\left(9+4\sqrt{5}+9-4\sqrt{5}\right)^{2}
Anything divided by one gives itself.
\left(18+4\sqrt{5}-4\sqrt{5}\right)^{2}
Add 9 and 9 to get 18.
18^{2}
Combine 4\sqrt{5} and -4\sqrt{5} to get 0.
324
Calculate 18 to the power of 2 and get 324.