Skip to main content
Solve for h
Tick mark Image
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(\xi )r=\frac{1}{3}\pi hr_{1}^{2}+\frac{1}{3}\pi hr_{2}^{2}+\frac{1}{3}\pi hr_{1}r_{2}
Use the distributive property to multiply \frac{1}{3}\pi h by r_{1}^{2}+r_{2}^{2}+r_{1}r_{2}.
\frac{1}{3}\pi hr_{1}^{2}+\frac{1}{3}\pi hr_{2}^{2}+\frac{1}{3}\pi hr_{1}r_{2}=\frac{\mathrm{d}}{\mathrm{d}x}(\xi )r
Swap sides so that all variable terms are on the left hand side.
\left(\frac{1}{3}\pi r_{1}^{2}+\frac{1}{3}\pi r_{2}^{2}+\frac{1}{3}\pi r_{1}r_{2}\right)h=\frac{\mathrm{d}}{\mathrm{d}x}(\xi )r
Combine all terms containing h.
\frac{\pi r_{1}^{2}+\pi r_{1}r_{2}+\pi r_{2}^{2}}{3}h=0
The equation is in standard form.
h=0
Divide 0 by \frac{1}{3}\pi r_{1}^{2}+\frac{1}{3}\pi r_{2}^{2}+\frac{1}{3}\pi r_{1}r_{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\xi )r=\frac{1}{3}\pi hr_{1}^{2}+\frac{1}{3}\pi hr_{2}^{2}+\frac{1}{3}\pi hr_{1}r_{2}
Use the distributive property to multiply \frac{1}{3}\pi h by r_{1}^{2}+r_{2}^{2}+r_{1}r_{2}.
0=\frac{\pi hr_{1}^{2}+\pi hr_{1}r_{2}+\pi hr_{2}^{2}}{3}
The equation is in standard form.
r\in
This is false for any r.