Solve for h
\left\{\begin{matrix}\\h=0\text{, }&\text{unconditionally}\\h\in \mathrm{R}\text{, }&r_{1}=0\text{ and }r_{2}=0\end{matrix}\right.
Solve for r
r\in \mathrm{R}
\left(r_{1}=0\text{ and }r_{2}=0\right)\text{ or }h=0
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}x}(\xi )r=\frac{1}{3}\pi hr_{1}^{2}+\frac{1}{3}\pi hr_{2}^{2}+\frac{1}{3}\pi hr_{1}r_{2}
Use the distributive property to multiply \frac{1}{3}\pi h by r_{1}^{2}+r_{2}^{2}+r_{1}r_{2}.
\frac{1}{3}\pi hr_{1}^{2}+\frac{1}{3}\pi hr_{2}^{2}+\frac{1}{3}\pi hr_{1}r_{2}=\frac{\mathrm{d}}{\mathrm{d}x}(\xi )r
Swap sides so that all variable terms are on the left hand side.
\left(\frac{1}{3}\pi r_{1}^{2}+\frac{1}{3}\pi r_{2}^{2}+\frac{1}{3}\pi r_{1}r_{2}\right)h=\frac{\mathrm{d}}{\mathrm{d}x}(\xi )r
Combine all terms containing h.
\frac{\pi r_{1}^{2}+\pi r_{1}r_{2}+\pi r_{2}^{2}}{3}h=0
The equation is in standard form.
h=0
Divide 0 by \frac{1}{3}\pi r_{1}^{2}+\frac{1}{3}\pi r_{2}^{2}+\frac{1}{3}\pi r_{1}r_{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\xi )r=\frac{1}{3}\pi hr_{1}^{2}+\frac{1}{3}\pi hr_{2}^{2}+\frac{1}{3}\pi hr_{1}r_{2}
Use the distributive property to multiply \frac{1}{3}\pi h by r_{1}^{2}+r_{2}^{2}+r_{1}r_{2}.
0=\frac{\pi hr_{1}^{2}+\pi hr_{1}r_{2}+\pi hr_{2}^{2}}{3}
The equation is in standard form.
r\in
This is false for any r.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}