Solve for x
\left\{\begin{matrix}x=\frac{\epsilon -R}{z+1}\text{, }&z\neq -1\\x\in \mathrm{R}\text{, }&\epsilon =R\text{ and }z=-1\end{matrix}\right.
Solve for R
R=\epsilon -x-xz
Share
Copied to clipboard
-xz-x=R-\epsilon
Subtract \epsilon from both sides.
\left(-z-1\right)x=R-\epsilon
Combine all terms containing x.
\frac{\left(-z-1\right)x}{-z-1}=\frac{R-\epsilon }{-z-1}
Divide both sides by -z-1.
x=\frac{R-\epsilon }{-z-1}
Dividing by -z-1 undoes the multiplication by -z-1.
x=-\frac{R-\epsilon }{z+1}
Divide R-\epsilon by -z-1.
R=\epsilon -xz-x
Swap sides so that all variable terms are on the left hand side.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}